【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.
(1)求矩形的外接圓的方程;
(2)已知直線(),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.
【答案】解:(1)由且,點在邊所在的直線上
所在直線的方程是: 即由得
矩形ABCD的外接圓的方程是:
(2)直線的方程可化為:
可看作是過直線和的交點的直線系,即恒過定點由知點在圓內(nèi),所以與圓恒相交,
設(shè)與圓的交點為, 為到的距離)
設(shè)與的夾角為,則當(dāng)時, 最大, 最短此時的斜率為的斜率的負倒數(shù): , 的方程為
即:
【解析】試題分析:由且點在邊所在的直線上得直線的方程,聯(lián)立直線方程得交點的坐標,則題意可知矩形外接圓圓心為,半徑,可得外接圓方程;(2)由可知恒過點,求得,可證與圓相交,求得與圓相交時弦長,經(jīng)檢驗, 時弦長最短,可得,進而得,最后可得直線方程.
試題解析:(1)∵且,∴,點在邊所在的直線上,
∴所在直線的方程是,即.
由得.
∴,∴矩形的外接圓的方程是.
(2)證明:直線的方程可化為,
可看作是過直線和的交點的直線系,即恒過定點,
由知點在圓內(nèi),所以與圓恒相交,
設(shè)與圓的交點為(為到的距離),
設(shè)與的夾角為,則,當(dāng)時, 最大, 最短.
此時的斜率為的斜率的負倒數(shù),即,故的方程為,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),.
(1)若的圖象在處的切線恰好也是圖象的切線.
①求實數(shù)的值;
②若方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.
(2)當(dāng)時,求證:對于區(qū)間上的任意兩個不相等的實數(shù), ,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機變量越大,說明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,
則.正確的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為f(x)= .
(1)判斷并證明f(x)在(0,+∞)上的單調(diào)性;
(2)求當(dāng)x<0時,函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)若曲線在點處的切線的斜率為5,求的值;
(2)若函數(shù)的最小值為,求的值;
(3)當(dāng)時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若 ,求當(dāng)下潛速度取什么值時,總用氧量最少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com