【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)以往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為0.9(升),返回水面的平均速度為(米/單位時(shí)間),每單位時(shí)間用氧量為1.5(升),記該潛水員在此次考察活動(dòng)中的總用氧量為(升).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)若 ,求當(dāng)下潛速度取什么值時(shí),總用氧量最少.

【答案】1;(2時(shí),總用氧量最少.

【解析】試題分析:(1)由題意,下潛用時(shí)用氧量為,返回水面用時(shí)用氧量為,二者求和即可;(2)由(1)知,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得時(shí)總用氧量最少.

試題解析:(1)由題意,下潛用時(shí)(單位時(shí)間),用氧量為(升),

水底作業(yè)時(shí)的用氧量為(升),

返回水面用時(shí)(單位時(shí)間),用氧量為(升),

總用氧量.

2,

,

時(shí),,函數(shù)單調(diào)遞減,

時(shí),,函數(shù)單調(diào)遞增,

當(dāng)時(shí),函數(shù)在上遞減,在上遞增,

此時(shí),時(shí)總用氧量最少,

當(dāng)時(shí),上遞增,

此時(shí)時(shí),總用氧量最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形的對(duì)角線交于點(diǎn),邊所在直線的方程為,點(diǎn)在邊所在的直線上.

(1)求矩形的外接圓的方程;

(2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識(shí)競賽活動(dòng),解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿分為樣(樣本容)進(jìn)行統(tǒng)計(jì). 按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的名同學(xué)中得分在的學(xué)生人數(shù),的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)軸正半軸上一點(diǎn), 兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線兩點(diǎn).(Ⅰ)求證: ;

(Ⅱ)若點(diǎn)的坐標(biāo)為,且,試求所有滿足條件的直線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識(shí)競賽活動(dòng)解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿分為樣(樣本容 )進(jìn)行統(tǒng)計(jì)按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù))

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的名同學(xué)中得分在的學(xué)生人數(shù)恰有一人的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x)=f(x+4),當(dāng)2≤x≤6時(shí), ,f(4)=31.

(1)求mn的值;

(2)比較f(log3m)與f(log3n)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知ABa,BCb(a>b),在AB,ADCB,CD上,分別截取AEAHCFCGx(x>0),設(shè)四邊形EFGH的面積為y.

(1)寫出四邊形EFGH的面積yx之間的函數(shù)關(guān)系;

(2)求當(dāng)x為何值時(shí)y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),現(xiàn)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)在曲線上是否存在一點(diǎn),使點(diǎn)到直線的距離最。咳舸嬖,求出距離的最小值及點(diǎn)的直角坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù), , .

(1)討論函數(shù)的單調(diào)性;

(2)若,且對(duì)任意的,總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案