【題目】選修4-4:坐標系與參數(shù)方程
已知在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),現(xiàn)以原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)在曲線上是否存在一點,使點到直線的距離最?若存在,求出距離的最小值及點的直角坐標;若不存在,請說明理由.
【答案】(1), ;(2), .
【解析】試題分析:(1)把曲線的參數(shù)方程分類參數(shù),根據(jù)同角三角函數(shù)的基本關(guān)系消去參數(shù)得到其普通方程,根據(jù)把直線的極坐標方程化成直角坐標方程;(2)設(shè),由點到直線的距離公式得到距離關(guān)于參數(shù)的的函數(shù)關(guān)系,通過三角恒等變換和三角函數(shù)的性質(zhì)得到最小值和相應(yīng)點的坐標.
試題解析:(1)由題意知曲線的參數(shù)方程可化簡為,
..................3分
由直線的極坐標方程可得直角坐標方程為...................5分
(2)若點是曲線上任意一點,則可設(shè),
設(shè)其到直線的距離為,則..............7分
化簡得,當,即時, ......................9分
此時點的坐標為……………………10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)若曲線在點處的切線的斜率為5,求的值;
(2)若函數(shù)的最小值為,求的值;
(3)當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若 ,求當下潛速度取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出(萬元)與銷售額(萬元)之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)據(jù)此估計廣告費用為12萬元時的銷售額約為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了吸引顧客,設(shè)計了一個摸球小游戲,顧客從裝有1個紅球,1個白球,3個黑球的袋中一次隨機的摸2個球,設(shè)計獎勵方式如下表:
結(jié)果 | 獎勵 |
1紅1白 | 10元 |
1紅1黑 | 5元 |
2黑 | 2元 |
1白1黑 | 不獲獎 |
(1)某顧客在一次摸球中獲得獎勵X元,求X的概率分布表與數(shù)學(xué)期望;
(2)某顧客參與兩次摸球,求他能中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的方程為+=1(a>b>0),右焦點為F(c,0)(c>0),方程ax2+bx-c=0的兩實根分別為x1,x2,則P(x1,x2)( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=1外
D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時分別為1,2,加工一件乙設(shè)備所需工時分別為2,1.A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, , , 為的中點,連接,過點作交于點,連接,已知.
(1)求證: ;
(2)若,求的長度;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系xOy中,曲線C:(x-1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為,以O為極點,x軸正半軸為極軸,建立極坐標系.
(1)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com