【題目】某商店為了吸引顧客,設(shè)計(jì)了一個(gè)摸球小游戲,顧客從裝有1個(gè)紅球,1個(gè)白球,3個(gè)黑球的袋中一次隨機(jī)的摸2個(gè)球,設(shè)計(jì)獎(jiǎng)勵(lì)方式如下表:

結(jié)果

獎(jiǎng)勵(lì)

1紅1白

10元

1紅1黑

5元

2黑

2元

1白1黑

不獲獎(jiǎng)

(1)某顧客在一次摸球中獲得獎(jiǎng)勵(lì)X元,求X的概率分布表與數(shù)學(xué)期望;

(2)某顧客參與兩次摸球,求他能中獎(jiǎng)的概率.

【答案】(1)概率分布表為:

X

10

5

2

0

P

E(X)=3.1元.

(2)

【解析】

試題分析:(1)因?yàn)镻(X=10)=,P(X=5)=,P(X=2)=,P(X=0) =

所以X的概率分布表為:

X

10

5

2

0

P

從而E(X)=10+5+2+0=3.1元.

(2)能中獎(jiǎng)指至少有一次中獎(jiǎng),因?yàn)橐淮沃歇?jiǎng)的概率為,所以一次不中獎(jiǎng)的概率為,兩次皆不中獎(jiǎng)概率為,因此至少有一次中獎(jiǎng)概率為1-

試題解析:解:(1)因?yàn)镻(X=10)=,P(X=5)=

P(X=2)=,P(X=0) =,

所以X的概率分布表為:

X

10

5

2

0

P

從而E(X)=10+5+2+0=3.1元 6分

(2)記該顧客一次摸球中獎(jiǎng)為事件A,由(1)知,P(A)=,

從而他兩次摸球中至少有一次中獎(jiǎng)的概率P=1-[1-P(A)]2

答:他兩次摸球中至少有一次中獎(jiǎng)的概率為 10分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.

(1)求證:OC⊥PD;

(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識(shí)競(jìng)賽活動(dòng),解本了次競(jìng)賽學(xué)生成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿分為樣(樣本容 )進(jìn)行統(tǒng)計(jì)按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù))

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競(jìng)賽學(xué)生成績(jī)是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的名同學(xué)中得分在的學(xué)生人數(shù)恰有一人的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知ABa,BCb(a>b),在AB,AD,CB,CD上,分別截取AEAHCFCGx(x>0),設(shè)四邊形EFGH的面積為y.

(1)寫出四邊形EFGH的面積yx之間的函數(shù)關(guān)系;

(2)求當(dāng)x為何值時(shí)y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若,求曲線處切線的斜率;

(2)求的單調(diào)區(qū)間;

(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),現(xiàn)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)在曲線上是否存在一點(diǎn),使點(diǎn)到直線的距離最。咳舸嬖,求出距離的最小值及點(diǎn)的直角坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)為單位圓上逆時(shí)針均勻分布的六個(gè)點(diǎn),現(xiàn)從這六個(gè)點(diǎn)中任選其中三個(gè)不同點(diǎn)構(gòu)成一個(gè)三角形,記該三角形的面積為隨機(jī)變量.

(1)求的概率;

(2)求的分布列及數(shù)學(xué)期望 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年5月,我省南昌市遭受連日大暴雨天氣,某網(wǎng)站就“民眾是否支持加大修建城市地下排水設(shè)施的資金投入”進(jìn)行投票,按照南昌暴雨前后兩個(gè)時(shí)間收集有效投票,暴雨后的投票收集了份,暴雨前的投票也收集了份,所得統(tǒng)計(jì)結(jié)果如下表:

已知工作人與從所有投票中任取一個(gè),取到“不支持投入”的投票的概率為.

(1)求列表中數(shù)據(jù)的值;

(2)能夠有多大的把握認(rèn)為南昌暴雨對(duì)民眾是否贊成加大對(duì)修建城市地下排水設(shè)施的投入有關(guān)系?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+x的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案