函數(shù)f(x)=log2·lo(2x)的最小值為    


-解析:依題意得f(x)=log2x·(2+2log2x)

=(log2x)2+log2x

=(log2x+)2-

≥-,

當(dāng)且僅當(dāng)log2x=-,

即x=時(shí)等號(hào)成立,

因此函數(shù)f(x)的最小值為-.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


下面各組函數(shù)中為相等函數(shù)的是(  )

(A)f(x)=,g(x)=x-1

(B)f(x)=x+1,g(x)=

(C)f(x)=ln ex與g(x)=eln x

(D)f(x)=x0與g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


若偶函數(shù)y=f(x)為R上的周期為6的周期函數(shù),且滿足f(x)=(x+1)(x-a)(-3≤x≤3),則f(-6)等于    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)f(x)=(a>0,b>0).

(1)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);

(2)設(shè)f(x)是奇函數(shù),求a與b的值;

(3)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知函數(shù)f(x)=|lg x|.若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(  )

(A)(2,+∞)    (B)[2,+∞)

(C)(3,+∞)  (D)[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


.已知函數(shù)f(x)=ln.

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;

(2)對(duì)于x∈[2,6],f(x)=ln>ln恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


若y=是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),則整數(shù)a的值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知函數(shù)f(x)的圖象如圖所示,則函數(shù)g(x)=log f(x)的定義域是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


某地近年來(lái)持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過(guò)4噸的每噸2元;超過(guò)4噸而不超過(guò)6噸的,超出4噸的部分每噸4元;超過(guò)6噸的,超出6噸的部分每噸6元.

(1)寫(xiě)出每戶每月用水量x(噸)與支付費(fèi)用y(元)的函數(shù)關(guān)系;

(2)該地一家庭記錄了去年12個(gè)月的月用水量(x∈N*)如表:

月用水量x(噸)

3

4

5

6

7

頻數(shù)

1

3

3

3

2

請(qǐng)你計(jì)算該家庭去年支付水費(fèi)的月平均費(fèi)用(精確到1元);

(3)今年干旱形勢(shì)仍然嚴(yán)峻,該地政府號(hào)召市民節(jié)約用水,如果每個(gè)月水費(fèi)不超過(guò)12元的家庭稱為“節(jié)約用水家庭”,隨機(jī)抽取了該地100戶的月用水量作出如下統(tǒng)計(jì)表:

月用水量x(噸)

1

2

3

4

5

6

7

頻數(shù)

10

20

16

16

15

13

10

據(jù)此估計(jì)該地“節(jié)約用水家庭”的比例.

查看答案和解析>>

同步練習(xí)冊(cè)答案