【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.
【答案】(1);(2)
【解析】
(1)用每個長方形的面積底邊中點值,累加即為平均數(shù)的估計值;
(2)根據(jù)題意計算出在內(nèi)的學(xué)生人數(shù),計算出所有答題的情況,再計算出滿足題意的情況,用古典概型計算公式進(jìn)行計算即可.
(1)估計平均數(shù)為:
.
(2)答對題數(shù)在內(nèi)的學(xué)生有人,記為A,B;
答對題數(shù)在內(nèi)的學(xué)生有人,記為c,d,e.
從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人的情況有
,,,,,
,,,,,共10種,
恰有1人答對題數(shù)在內(nèi)的情況有
,,,,,,共6種,
故所求概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的最大項的值與最小項的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系xOy的原點為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線l的坐標(biāo)方程為,曲線C的參數(shù)方程為(θ為參數(shù)).
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)以曲線C上的動點M為圓心、r為半徑的圓恰與直線l相切,求r的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的機(jī)器上存在一種易損元件,這種元件發(fā)生損壞時,需要及時維修. 現(xiàn)有甲、乙兩名工人同時從事這項工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數(shù).
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 | 8日 | 9日 | 10日 |
甲維修的元件數(shù) | 3 | 5 | 4 | 6 | 4 | 6 | 3 | 7 | 8 | 4 |
乙維修的元件數(shù) | 4 | 7 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 7 |
(1)從這天中,隨機(jī)選取一天,求甲維修的元件數(shù)不少于5件的概率;
(2)試比較這10天中甲維修的元件數(shù)的方差與乙維修的元件數(shù)的方差的大小.(只需寫出結(jié)論);
(3)由于甲、乙的任務(wù)量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過3件,請利用上表數(shù)據(jù)估計最少需要增加幾名工人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動中心,為此,該企業(yè)工會采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運動時間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來估計該企業(yè)職工每周的運動時間:
平均運動時間 | 頻數(shù) | 頻率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合計 | 300 | 1 |
(1)求抽取的女職工的人數(shù);
(2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計該企業(yè)職工每周的平均運動時間不低于4h的概率;
男職工 | 女職工 | 總計 | |
平均運動時間低于4h | |||
平均運動時間不低于4h | |||
總計 |
②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運動時間不低于4h,請完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運動時間不低于4h與性別有關(guān)”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“偉大的變革—慶祝改革開放周年大型展覽”于年月日在中國國家博物館閉幕,本次特展緊扣“改革開放年光輝歷程”的主線,多角度、全景式描繪了我國改革開放年波瀾壯闊的歷史畫卷.據(jù)統(tǒng)計,展覽全程呈現(xiàn)出持續(xù)火爆的狀態(tài),現(xiàn)場觀眾累計達(dá)萬人次,參展人數(shù)屢次創(chuàng)造國家博物館參觀紀(jì)錄,網(wǎng)上展館點擊瀏覽總量達(dá)億次.
下表是年月參觀人數(shù)(單位:萬人)統(tǒng)計表
日期 | ||||||||||||||
人數(shù) | ||||||||||||||
日期 | ||||||||||||||
人數(shù) |
根據(jù)表中數(shù)據(jù)回答下列問題:
(1)請將年月前半月(日)和后半月(日)參觀人數(shù)統(tǒng)計對比莖葉圖填補完整,并通過莖葉圖比較兩組數(shù)據(jù)方差的大小(不要求計算出具體值,得出結(jié)論即可);
(2)將年月參觀人數(shù)數(shù)據(jù)用該天的對應(yīng)日期作為樣本編號,現(xiàn)從中抽樣天的樣本數(shù)據(jù).若抽取的樣本編號是以為公差的等差數(shù)列,且數(shù)列的第項為,求抽出的這個樣本數(shù)據(jù)的平均值;
(3)根據(jù)國博以往展覽數(shù)據(jù)及調(diào)查統(tǒng)計信息可知,單日入館參觀人數(shù)為(含,單位:萬人)時,參觀者的體驗滿意度最佳,在從中抽出的樣本數(shù)據(jù)中隨機(jī)抽取三天的數(shù)據(jù),參觀者的體驗滿意度為最佳的天數(shù)記為,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a=bcosC+csinB.
(1)求B;
(2)求y=sinA-sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對稱,則函數(shù)的圖象( )
A. 關(guān)于直線對稱B. 關(guān)于直線對稱
C. 關(guān)于點對稱D. 關(guān)于點對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com