已知數(shù)列{an},a1=a,且an+1+2an=2n+1(n∈N*),
(1)若a1,a2,a3成等差數(shù)列,求實(shí)數(shù)a的值;
(2)數(shù)列{an}為等比數(shù)列,求出a,并加以證明.
考點(diǎn):等比數(shù)列的性質(zhì),等差數(shù)列的性質(zhì)
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)由a1=a,a2=-2a+4,a3=4a等差數(shù)列,知2(-2a+4)=a+4a,由此能求出實(shí)數(shù)a的值.
(2)因?yàn)閍n+1+2an=2n+1(n∈N*),所以
an+1
2n+1
+
an
2n
=1,故{
an
2n
-
1
2
}是以
a
2
-
1
2
為首項(xiàng),-1為公比的等比數(shù)列,由此能求出數(shù)列{an}能為等比數(shù)列的充要條件.
解答: 解:(1)a1=a,a2=-2a+4,a3=4a,
∵2a2=a1+a3,
∴2(-2a+4)=a+4a,
∴a=
8
9
;
(2)∵an+1+2an=2n+1(n∈N*),
an+1
2n+1
+
an
2n
=1,
an+1
2n+1
-
1
2
=-(
an
2n
-
1
2
),
故{
an
2n
-
1
2
}是以
a
2
-
1
2
為首項(xiàng),-1為公比的等比數(shù)列,
an
2n
-
1
2
=(
a
2
-
1
2
)•(-1)n-1,
∴an=2n[
1
2
+(
a
2
-
1
2
)•(-1)n-1],
an+1
an
=2•
1
2
+(
a
2
-
1
2
)•(-1)n
1
2
+(
a
2
-
1
2
)•(-1)n-1
,
∴{an}為等比數(shù)列
an+1
an
為常數(shù),
∴當(dāng)且僅當(dāng)a=1時(shí),
an+1
an
=2為常數(shù).
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的性質(zhì)及其應(yīng)用,具有一定的探索性,對(duì)數(shù)學(xué)思維的要求較高,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x+y-1≤0
x-y+1≥0
y≥0
且μ=x2+y2-4x-4y+
15
2
,則μ的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Ω為平面直角坐標(biāo)系xOy中的點(diǎn)集,從Ω中的任意一點(diǎn)P作x軸、y軸的垂線,垂足分別為M,N,記點(diǎn)M的橫坐標(biāo)的最大值與最小值之差為x(Ω),點(diǎn)N的縱坐標(biāo)的最大值與最小值之差為y(Ω).若Ω是邊長(zhǎng)為1的正方形,給出下列三個(gè)結(jié)論:
①x(Ω)的最大值為
2
;
②x(Ω)+y(Ω)的取值范圍是[2,2
2
];
③x(Ω)-y(Ω)恒等于0.
其中所有正確結(jié)論的序號(hào)是( 。
A、①B、②③C、①②D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):-12+22-32+42+…+(-1)nn2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx+b(a<0,b∈R)的最大值為5,最小值為-1,求a,b的值并求g(x)=bcos(ax)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
2
,b=2,B=45°,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{xn}對(duì)一切n∈N*均滿(mǎn)足xn+
1
xn+1
<2.證明:
(1)xn<xn+1;
(2)1-
1
n
<xn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿(mǎn)足z
.
z
-i(
.
3z
)=1+3i,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

華羅庚中學(xué)高二排球隊(duì)和籃球隊(duì)各有10名同學(xué),現(xiàn)測(cè)得排球隊(duì)10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊(duì)10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請(qǐng)根據(jù)兩隊(duì)身高數(shù)據(jù)記錄的莖葉圖,指出哪個(gè)隊(duì)的身高數(shù)據(jù)方差較小(無(wú)需計(jì)算)以及排球隊(duì)的身高數(shù)據(jù)的中位數(shù)與眾數(shù);
(2)現(xiàn)從兩隊(duì)所有身高超過(guò)178cm的同學(xué)中隨機(jī)抽取三名同學(xué),則恰好兩人來(lái)自排球隊(duì)一人來(lái)自籃球隊(duì)的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案