如圖,平面平面,四邊形是正方形,四邊形是矩形,且,的中點,則與平面所成角的正弦值為___________.

試題分析:∵是正方形,∴.∵面且交于,∴.∵,∴,.又,,是矩形,的中點,∴,∴,∴,∵,∴平面,而,故平面平面,如圖.

在平面內(nèi)作,垂足為,則平面,∴與平面所成的角.在中,,,∴
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是銳角,且平面ACEF⊥平面ABCD.

(1)求證:
(2)若直線DE與平面ACEF所成的角的正切值是,試求的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,PA⊥底面ABCD,ACCD,∠DAC=60°,ABBCACEPD的中點,FED的中點.
 
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正△ABC的邊長為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.

(1)試判斷直線AB與平面DEF的位置關系,并說明理由;
(2)求棱錐E-DFC的體積;
(3)在線段BC上是否存在一點P,使AP⊥DE?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若四面體ABCD的三組對棱分別相等,即AB=CD,AC=BD,AD=BC,則    (寫出所有正確結論的編號). 
①四面體ABCD每組對棱相互垂直;
②四面體ABCD每個面的面積相等;
③從四面體ABCD每個頂點出發(fā)的三條棱兩兩夾角之和大于90°而小于180°;
④連接四面體ABCD每組對棱中點的線段相互垂直平分;
⑤從四面體ABCD每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列為真命題的是(  )
A.若α⊥β,m⊥α,則m∥βB.若α⊥γ,β⊥γ,則α∥β
C.若m⊥α,n∥m,則n⊥αD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在正方體ABCD ­A1B1C1D1中,點M,N分別在AB1,BC1上(M,N不與B1,C1重合),且AM=BN,那么①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,以上4個結論中,正確結論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設a,b為空間的兩條直線,α,β為空間的兩個平面,給出下列命題:
①若a∥α,a∥β,則α∥β;②若a⊥α,α⊥β,則α⊥β;
③若a∥α,b∥α,則a∥b; ④若a⊥α,b⊥α,則a∥b.
上述命題中,所有真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列四個正方體中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出直線AB∥平面MNP的圖形的序號是________(寫出所有符合要求的圖形序號).

查看答案和解析>>

同步練習冊答案