若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則    (寫出所有正確結(jié)論的編號(hào)). 
①四面體ABCD每組對(duì)棱相互垂直;
②四面體ABCD每個(gè)面的面積相等;
③從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°而小于180°;
④連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分;
⑤從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).
②④⑤
把四面體補(bǔ)形為平行六面體,由三組對(duì)棱分別相等可知此平行六面體為長(zhǎng)方體,如圖所示,只有長(zhǎng)方體為正方體時(shí)①才正確,故①不正確.

在長(zhǎng)方體中,有△BAC≌△DCA.
△ABC≌△DCB,△CBD≌△ADB.
∴四面體ABCD每個(gè)面的面積都相等,故②正確.
對(duì)于③,以∠BAC,∠CAD,∠BAD為例說明.
∵△BAC≌△DCA,∴∠CAD=∠ACB.
又∵△DAB≌△CBA,
∴∠BAD=∠ABC.
∴∠BAC+∠CAD+∠BAD=∠BAC+∠ACB+∠ABC=180°,故③不正確.
對(duì)于④,連接四面體ABCD對(duì)棱中點(diǎn)的線段即是連接長(zhǎng)方體對(duì)面中心的線段,顯然相互垂直平分,故④正確.
對(duì)于⑤,以AB、AC、AD為例進(jìn)行說明.
∵AD=BC,AB、AC、BC三邊長(zhǎng)可構(gòu)成△ABC,
∴AB、AC、AD可以作為一個(gè)三角形的三邊長(zhǎng).同理可得從其他頂點(diǎn)出發(fā)的三條棱的長(zhǎng)也可以作為一個(gè)三角形的三邊長(zhǎng).故⑤正確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△中,,平面,,分別是、上的動(dòng)點(diǎn),且

(1)求證:不論為何值,總有平面平面;
(2)當(dāng)為何值時(shí),平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A,B,C,D為空間四點(diǎn).在△ABC中,AB=2,AC=BC=.等邊三角形ADB以AB為軸轉(zhuǎn)動(dòng).

(1)當(dāng)平面ADB⊥平面ABC時(shí),求CD.
(2)當(dāng)△ADB轉(zhuǎn)動(dòng)時(shí),是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知α、β、γ是三個(gè)不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α、β、γ中的任意兩個(gè)換成直線,另一個(gè)保持不變,在所得的所有新命題中,真命題的個(gè)數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)中任意取4個(gè)不同的頂點(diǎn),這4個(gè)頂點(diǎn)可能是:
(1)矩形的4個(gè)頂點(diǎn);
(2)每個(gè)面都是等邊三角形的四面體的4個(gè)頂點(diǎn);
(3)每個(gè)面都是直角三角形的四面體的4個(gè)頂點(diǎn);
(4)有三個(gè)面是等腰直角三角形,有一個(gè)面是等邊三角形的四面體的4個(gè)頂點(diǎn).
其中正確的結(jié)論有________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCDA1B1C1D1中,與體對(duì)角線AC1異面的棱有(  )
A.3條B.4條C.6條D.8條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

l1,l2,l3是空間三條不同的直線,則下列命題正確的是(  )
A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3
C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共點(diǎn)⇒l1,l2,l3共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若α,β是兩個(gè)相交平面,點(diǎn)A不在α內(nèi),也不在β內(nèi),則過點(diǎn)A且與α和β都平行的直線(  )
A.只有1條B.只有2條
C.只有4條D.有無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平面平面,四邊形是正方形,四邊形是矩形,且的中點(diǎn),則與平面所成角的正弦值為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案