求函數(shù)f(x)=a2x2-2a2x+1在[-1,2]的值域.
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:因不知道a是否為0,所以分a=0和a≠0兩種情況討論,又因?qū)ΨQ軸把區(qū)間分成兩部分,再分別求出值域取并集.
解答: 解:分a=0和a≠0兩種情況討論,
①當(dāng)a=0時(shí),f(x)=1,
②當(dāng)a≠0時(shí),f(x)=a2x2-2a2x+1=a2(x-1)2+1-a2,
對(duì)稱軸x=1把區(qū)間[-1,2]分成[-1,1],(1,2]兩部分,
在[-1,1]上函數(shù)f(x)是減函數(shù),
∴f(-1)最大為(3a2+1),f(1)最小為(1-a2),
在(1,2]上函數(shù)f(x)是增函數(shù),f(2)最大,而f(2)<f(-1),
綜上所述,函數(shù)f(x)=a2x2-2a2x+1在[-1,2]的值域?yàn)椋篬1-a2,3a2+1].
點(diǎn)評(píng):本題考察了求函數(shù)的值域問題,其中分類討論和數(shù)形結(jié)合是常見的數(shù)學(xué)方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名運(yùn)動(dòng)員參加“選拔測試賽”,在相同的條件下,兩人5次測試的成績(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從甲乙二人中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計(jì)算);
(Ⅲ)若將頻率視為概率,對(duì)運(yùn)動(dòng)員甲在今后三次測試成績進(jìn)行預(yù)測,記這三次成績高于80分的次數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)列A={a1,a2,a3…},定義△A={a2-a1,a3-a2,a4-a3,…},它的第n項(xiàng)為an+1-an(n∈N+),假設(shè)△A是首項(xiàng)是a公比為q的等比數(shù)列.
(Ⅰ)求數(shù)列△(△A)的前n項(xiàng)和Tn
(Ⅱ)若a1=1,a=2,q=2.
①求實(shí)數(shù)列A={a1,a2,a3…}的通項(xiàng)an;
②證明:
n
2
-
1
3
a1
a2
+
a2
a3
+
a3
a4
+…+
an
an+1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx•cos(x-
π
6
)+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時(shí)的取值集合;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
1
2
,b+c=3.求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2-3x+
4
3
,直線l:ax+2y+c=0.
(1)若對(duì)任意c∈R,直線l與曲線y=f(x)不相切,求實(shí)數(shù)a的取值范圍;
(2)若直線l與曲線y=f(x)(0≤x≤2)相切,求實(shí)數(shù)c的取值范圍;
(3)若a=9,當(dāng)x∈[0,2],函數(shù)y=f(x)圖象在直線l的下方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+y2=2,設(shè)z=
1
x2
+
2y
x
,則z的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a2=1,a3=2a2,數(shù)列{an}的前n項(xiàng)和為Sn,則S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,則
lim
n→+∞
2nSn
(n+32)Sn+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax(a>0,且a≠1)在[1,3]上的最大值比最小值大
a
2
,則a的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案