【題目】某市為提高市民的戒煙意識,通過一個戒煙組織面向全市煙民征招志愿戒煙者,從符合條件的志愿者中隨機抽取100名,將年齡分成,,,,五組,得到頻率分布直方圖如圖所示.

(1)求圖中的值,并估計這100名志愿者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)若年齡在的志愿者中有2名女性煙民,現(xiàn)從年齡在的志愿者中隨機抽取2人,求至少有一名女性煙民的概率;

(3)該戒煙組織向志愿者推薦了兩種戒煙方案,這100名志愿者自愿選取戒煙方案,并將戒煙效果進行統(tǒng)計如下:

有效

無效

合計

方案

48

60

方案

36

合計

完成上面的列聯(lián)表,并判斷是否有的把握認為戒煙方案是否有效與方案選取有關.

參考公式:,.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

【答案】(1)33.5;(2);(3)見解析

【解析】分析:(1)由頻率分布直方圖中所有小矩形的面積(頻率)之和為1可得;用同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表與頻率相乘可計算出估計值.

(2)把年齡在的志愿者5人進行編號(男女不同)后,可用列舉法列出任取2人的所有事件,分別計數(shù)后可得所求概率;

(3)由總?cè)藬?shù)是100人,可得列聯(lián)表,并根據(jù)公式計算后可知有無關系.

詳解:(1),

估計平均年齡為 .

(2)年齡在的志愿者共有5人,設兩名女性煙民為,其余3人為,,,任意抽取兩名煙民有,,,,,,,共10種,其中至少有一名女性煙民有7種,故概率為.

(3)列聯(lián)表如圖所示,

,

∴沒有的把握認為戒煙方案是否有效與方案選取有關.

有效

無效

合計

方案

48

12

60

方案

36

4

40

合計

84

16

100

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知命題:實數(shù)滿足,命題:實數(shù)滿足方程表示的焦點在軸上的橢圓,且的充分不必要條件,求實數(shù)的取值范圍;

(2)設命題:關于的不等式的解集是:函數(shù)的定義域為.若是真命題,是假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】程序框圖如圖,當輸入x為2016時,輸出的y的值為(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B,C是圓O上不同的三點,線段CO與線段AB交于點D,若 (λ∈R,μ∈R),則λ+μ的取值范圍是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標原點,極軸為x軸非負半軸建立平面直角坐標系.
(Ⅰ)求曲線C1和曲線C2的直角坐標方程;
(Ⅱ)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三次函數(shù)過點,且函數(shù)在點處的切線恰好是直線.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ) 設函數(shù),若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

同步練習冊答案