【題目】程序框圖如圖,當輸入x為2016時,輸出的y的值為( )
A.
B.1
C.2
D.4
【答案】A
【解析】解:第1次執(zhí)行循環(huán)體后,x=2013,滿足進行循環(huán)的條件,
第2次執(zhí)行循環(huán)體后,x=2010,滿足進行循環(huán)的條件,
第3次執(zhí)行循環(huán)體后,x=2007,滿足進行循環(huán)的條件,
…
第n次執(zhí)行循環(huán)體后,x=2016﹣3n,滿足進行循環(huán)的條件,
…
第672次執(zhí)行循環(huán)體后,x=0,滿足進行循環(huán)的條件,
第673次執(zhí)行循環(huán)體后,x=﹣3,不滿足進行循環(huán)的條件,故y= ,
故選:A
【考點精析】利用程序框圖對題目進行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數學 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.
(1)設總造價(元)表示為長度的函數;
(2)當取何值時,總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.
(1)求點的軌跡方程;
(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數,),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的普通方程和曲線的直角坐標方程;
(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足(,且),且,設,,數列滿足.
(1)求證:數列是等比數列并求出數列的通項公式;
(2)求數列的前n項和;
(3)對于任意,,恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為提高市民的戒煙意識,通過一個戒煙組織面向全市煙民征招志愿戒煙者,從符合條件的志愿者中隨機抽取100名,將年齡分成,,,,五組,得到頻率分布直方圖如圖所示.
(1)求圖中的值,并估計這100名志愿者的平均年齡(同一組中的數據用該組區(qū)間的中點值作代表);
(2)若年齡在的志愿者中有2名女性煙民,現從年齡在的志愿者中隨機抽取2人,求至少有一名女性煙民的概率;
(3)該戒煙組織向志愿者推薦了,兩種戒煙方案,這100名志愿者自愿選取戒煙方案,并將戒煙效果進行統(tǒng)計如下:
有效 | 無效 | 合計 | |
方案 | 48 | 60 | |
方案 | 36 | ||
合計 |
完成上面的列聯表,并判斷是否有的把握認為戒煙方案是否有效與方案選取有關.
參考公式:,.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(單位:毫米,以下同),按規(guī)定直徑在內為優(yōu)質品,現從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數據整理如下:
直徑分組 | |||||||
甲基地頻數 | 10 | 30 | 120 | 175 | 125 | 35 | 5 |
乙基地頻數 | 5 | 35 | 115 | 165 | 110 | 60 | 10 |
(1)根據以上統(tǒng)計數據完成下面列聯表,并回答是否有以上的把握認為“桔柚直徑與所在基地有關?”
甲基地 | 乙基地 | 合計 | |
優(yōu)質品 | _________ | _________ | _________ |
非優(yōu)質品 | _________ | _________ | _________ |
合計 | _________ | _________ | _________ |
(2)求優(yōu)質品率較高的基地的500個桔柚直徑的樣本平均數(同一組數據用該區(qū)間的中點值作代表);
(3)記甲基地直徑在范圍內的五個桔柚分別為、、、、,現從中任取二個,求含桔柚的概率.
附:,.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩地生產某種產品,他們可以調出的數量分別為300噸、750噸.A,B,C三地需要該產品數量分別為200噸,450噸,400噸,甲地運往A,B,C三地的費用分別為6元/噸、3元/噸,5元/噸,乙地運往A,B,C三地的費用分別為5元/噸,9元/噸,6元/噸,問怎樣調運,才能使總運費最。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com