【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明: .
【答案】(Ⅰ)(Ⅱ)(i)(ii)詳見(jiàn)解析
【解析】【試題分析】(1)借助題設(shè)條件,運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系分析求解;(2)先依據(jù)題設(shè)條件將問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,再運(yùn)用導(dǎo)數(shù)知識(shí)分析求解:
(Ⅰ).函數(shù)的定義域?yàn)?/span>, ,
當(dāng)時(shí), ;當(dāng)時(shí), .
所以在上單調(diào)遞減,在上單調(diào)遞增.
若在上單調(diào)遞減,在上單調(diào)遞增,
則.
(Ⅱ)(i)依題意,函數(shù)的定義域?yàn)?/span>, ,
所以方程在有兩個(gè)不同根.
即方程在有兩個(gè)不同根,
轉(zhuǎn)化為,函數(shù)與函數(shù)的圖象在有兩個(gè)不同交點(diǎn),如圖.
可見(jiàn),若令過(guò)原點(diǎn)且切于函數(shù)圖象的直線斜率為,
只需.
令切點(diǎn),所以,又,所以,
解得,于是,所以.
(ii)由(i)可知, 分別是方程的兩個(gè)根,
即, ,不妨設(shè),作差得,即,
原不等式等價(jià)于,即,即,
令,則, ,即,
設(shè), , ,
∴函數(shù)在上單調(diào)遞增,∴,即不等式成立,
故所證不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長(zhǎng)為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)(文)卷·2017屆湖北省沙市中學(xué)高三上學(xué)期第七次雙周練第16題)埃及數(shù)學(xué)中有一個(gè)獨(dú)特現(xiàn)象:除用一個(gè)單獨(dú)的符號(hào)表示以外,其它分?jǐn)?shù)都要寫(xiě)成若干個(gè)單分?jǐn)?shù)和的形式.例如可以這樣理解:假定有兩個(gè)面包,要平均分給5個(gè)人,如果每人,不夠,每人,余,再將這分成5份,每人得,這樣每人分得.形如的分?jǐn)?shù)的分解: , , ,按此規(guī)律, =____________; = ____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),A,B是曲線上兩個(gè)不同的點(diǎn).
(Ⅰ)求的單調(diào)區(qū)間,并寫(xiě)出實(shí)數(shù)的取值范圍;
(Ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)與其短軸得一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,直線與橢圓交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)合點(diǎn),且,點(diǎn)時(shí)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.
(1) 求橢圓的方程;
(2)是否存在直線,使得點(diǎn)平分線段?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個(gè)圓上,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證: 平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2) 據(jù)此估計(jì)2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)為.
(1)求橢圓的方程;
(2)已知為坐標(biāo)原點(diǎn), 是橢圓上的兩點(diǎn),連接的直線平行交軸于點(diǎn),證明: 成等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com