【題目】如圖,在三棱柱中,側(cè)棱底面,為的中點,.
(1)求證:平面;
(2)求四棱錐的體積.
【答案】(1)見解析;(2)3
【解析】試題分析:(1)欲證平面,根據(jù)線面平行的判定定理可知只需證與平面內(nèi)一直線平行,連接,設(shè)與相交于點O,連接,根據(jù)中位線定理可知∥,平面,平面,滿足定理所需條件;
(2)根據(jù)面面垂直的判定定理可知平面⊥平面,作,垂足為E,則⊥平面,然后求出棱長,最后根據(jù)四棱錐,的體積,即可求四棱錐的體積.
(1)證明:連接,設(shè)與相交于點,連接,
∵ 四邊形是平行四邊形,
∴點為的中點.
∵為的中點,
∴為△的中位線,
∴.
∵ 平面,平面,
∴平面.
(2)∵平面,平面,
∴ 平面 平面,且平面 平面 .
作,垂足為,則平面,
∵,,
在Rt△中,,,
∴四棱錐的體積
.
∴四棱錐的體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標(biāo)是,
代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), , ,∴ ,得,將點坐標(biāo)代入橢圓方程得,
點到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為
.
解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,
得,
因為點是線段的中點,∴點的坐標(biāo)是,
由點在直線上,∴,且,
解得, ,
∴橢圓的方程為.
(2)設(shè), , ,
將代入消去并整理得 ,
則, ,
,
∵四邊形為平行四邊形,∴ ,
得,將點坐標(biāo)代入橢圓方程得,
點到直線的距離為, ,
∴平行四邊形的面積為
.
故平行四邊形的面積為定值.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù), .
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,求證:函數(shù)有兩個不相等的零點, ,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立平面直角坐標(biāo)系,曲線的直角坐標(biāo)方程是(為參數(shù)).
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)求曲線與曲線交點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com