【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記“甲得第一名”為,“乙得第二名”為,“丙得第三名”為,若是真命題,是假命題,是真命題,則選拔賽的結(jié)果為( )
A.甲得第一名、乙得第三名、丙得第二名
B.甲沒得第一名、乙沒得第二名、丙得第三名
C.甲得第一名、乙沒得第二名、丙得第三名
D.甲得第二名、乙得第一名、丙得第三名
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.因筒車上盛水筒的運動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點)的運動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標(biāo)系(如圖3).設(shè)經(jīng)過t秒后,筒車上的某個盛水筒從點P0運動到點P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動的角速度ω(單位: ),盛水筒的初始位置P0以及所經(jīng)過的時間t(單位: ).已知r=3,h=2,筒車每分鐘轉(zhuǎn)動(按逆時針方向)1.5圈, 點P0距離水面的高度為3.5,若盛水筒M從點P0開始計算時間,則至少需要經(jīng)過_______就可到達最高點;若將點距離水面的高度表示為時間的函數(shù),則此函數(shù)表達式為_________.
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點,且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(5,2),且被圓C所截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線方程中的參數(shù)是,且與有且只有一個公共點,求的普通方程;
(2)已知點,若曲線方程中的參數(shù)是,,且與相交于,兩個不同點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由菱形,平行四邊形和矩形組成的一個平面圖形,其中,,,,將其沿,折起使得與重合,如圖2.
(1)證明:圖2中的平面平面;
(2)求圖2中點到平面的距離;
(3)求圖2中二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若對任意,都有成立,求實數(shù)的取值范圍;
(3)若過點可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 (為參數(shù)), (為參數(shù))
(Ⅰ)將的方程化為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若上的點對應(yīng)的參數(shù)為,為上的動點,求中點到直線 (為參數(shù))距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com