7.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C-ADE的體積.

分析 (1)推導(dǎo)出BC⊥平面ABE,從而AE⊥BC,再求出AE⊥BF,從而AE⊥平面BEC,由此能證明AE⊥BE.
(2)作EH⊥AB,三棱錐C-ADE的體積VC-ADE=VE-ACD,由此能求出結(jié)果.

解答 證明:(1)∵DA⊥平面ABE,BC∥DA,
∴BC⊥平面ABE,
∵AE?平面ABE,∴AE⊥BC,…(1分)
∵BF⊥平面ACE于點(diǎn)F,AE?平面ACE,
∴AE⊥BF,…(2分)
∵BC∩BF=B,…(3分)
BC?平面BEC,BF?平面BEC,∴AE⊥平面BEC,
∵BE?平面BEC,∴AE⊥BE.…(4分)
解:(2)作EH⊥AB,…(5分)
∵DA⊥平面ABE,EH?平面ABE,∴AD⊥EH,…(6分)
AD∩AB=A,AD?平面ABCD,AB?平面ABCD,
∴EH⊥平面ABCD,…(7分)
由(1)得AE⊥BE,AE=EB=BC=2,
AB=2$\sqrt{2}$,EH=$\sqrt{2}$,…(8分)
∴三棱錐C-ADE的體積VC-ADE=VE-ACD=$\frac{1}{3}EH•{S}_{△ACD}$=$\frac{1}{3}×\sqrt{2}×\frac{1}{2}×2×2\sqrt{2}$=$\frac{4}{3}$.…(10分)

點(diǎn)評 本題考查線線垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.傾斜角為120°且在y軸上的截距為-2的直線方程為( 。
A.y=-$\sqrt{3}$x+2B.y=-$\sqrt{3}$x-2C.y=$\sqrt{3}$x+2D.y=$\sqrt{3}$x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,則tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.關(guān)于直線l,m及平面α,β,下列命題中正確的是(  )
A.若l∥α,α∩β=m,則l∥mB.若l∥α,m∥α,則l∥m
C.若l⊥α,m∥α,則l⊥mD.若l∥α,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑,半徑長度為2,則該幾何體的表面積是(  )
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知an=($\frac{1}{3}$)n,把數(shù)列{an}的各項(xiàng)排成如圖的三角形,記A(s,t)表示第s行的第t個數(shù),則A(11,12)=( 。
A.($\frac{1}{3}$)67B.($\frac{1}{3}$)68C.($\frac{1}{3}$)112D.($\frac{1}{3}$)113

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,則y-2x的最大值是( 。
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.正方體ABCD-A'B'C'D'的棱長為a,連接A'C',A'D,A'B,BD,BC',C'D,得到一個三棱錐A'-BC'D.求:
(1)求異面直線A'D與C'D′所成的角;
(2)三棱錐A'-BC'D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)當(dāng)a=-$\frac{10}{3}$時,討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(3)若對于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案