【題目】甲、乙兩人分別從4種不同的圖書中任選2本閱讀,則甲、乙兩人選的2本恰好相同的概率為(

A.B.C.D.

【答案】C

【解析】

利用列舉法求出“甲從4種不同的圖書中任選2本閱讀”所包含的基本事件數(shù),進而求出“甲、乙兩人分別從4種不同的圖書中任選2本閱讀”包含的基本事件總數(shù),以及“甲、乙兩人選的2本恰好相同”包含的基本事件數(shù),根據(jù)古典概型的概率計算公式,可求概率.

、、表示4種不同的圖書,則事件“甲從4種不同的圖書中任選2本閱讀”所包含的基本事件有:、、、、,共種,

其中,事件“甲、乙兩人分別從4種不同的圖書中任選2本閱讀”所包含的基本事件數(shù)為,

記“甲、乙兩人選的2本恰好相同”為事件,則事件包含的基本事件數(shù)為,

.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是(

A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長

B.農(nóng)村居民的存款年底余額所占比重逐年上升

C.2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額

D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過程,得出6,3,105,168,4,21,共9個數(shù).若,根據(jù)上述過程得出的整數(shù)中,隨機選取兩個不同的數(shù),則這兩個數(shù)都是偶數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定下列四個命題,其中真命題是(

A.垂直于同一直線的兩條直線相互平行

B.若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行

C.垂直于同一平面的兩個平面相互平行

D.若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:存在,對任意的,都有為常數(shù)),則稱具有性質(zhì)

1)若無窮數(shù)列具有性質(zhì),且,求的值

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有性質(zhì),并說明理由.

3)設(shè)無窮數(shù)列既具有性質(zhì),又具有性質(zhì),其中互質(zhì),求證:數(shù)列具有性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,,的中點,的交點.將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為為參數(shù)),與圓關(guān)于直線對稱的圓為.以原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是

1)設(shè)直線軸和軸的交點分別為,為圓上的任意一點,求的最大值.

2)過點且與直線平行的直線交圓,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國農(nóng)歷的二十四節(jié)氣是凝結(jié)著中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩,20161130日,二十四節(jié)氣正式被聯(lián)合國教科文組織列入人類非物質(zhì)文化遺產(chǎn),也被譽為中國的第五大發(fā)明.某小學(xué)三年級共有學(xué)生500名,隨機抽查100名學(xué)生并提問二十四節(jié)氣歌,只能說出春夏兩句的有45人,能說出春夏秋三句及其以上的有32人,據(jù)此估計該校三年級的500名學(xué)生中,對二十四節(jié)氣歌只能說出第一句或一句也說不出的大約有(

A.69B.84C.108D.115

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(a,bR).

1)當(dāng)b=﹣1時,函數(shù)有兩個極值,求a的取值范圍;

2)當(dāng)ab1時,函數(shù)的最小值為2,求a的值;

3)對任意給定的正實數(shù)a,b,證明:存在實數(shù),當(dāng)時,.

查看答案和解析>>

同步練習(xí)冊答案