【題目】共享單車(chē)是城市慢行系統(tǒng)的一種創(chuàng)新模式,對(duì)于解決民眾出行“最后一公里”的問(wèn)題特別見(jiàn)效,由于停取方便、租用價(jià)格低廉,各色共享單車(chē)受到人們的熱捧.某自行車(chē)廠為共享單車(chē)公司生產(chǎn)新樣式的單車(chē),已知生產(chǎn)新樣式單車(chē)的固定成本為20 000元,每生產(chǎn)一輛新樣式單車(chē)需要增加投入100元.根據(jù)初步測(cè)算,自行車(chē)廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車(chē)的月產(chǎn)量(單位:輛),利潤(rùn)=總收益-總成本.
(1)試將自行車(chē)廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車(chē)廠的利潤(rùn)最大?最大利潤(rùn)是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用分別表示的三個(gè)內(nèi)角所對(duì)邊的邊長(zhǎng),表示的外接圓半徑.
(1),求的長(zhǎng);
(2)在中,若是鈍角,求證:;
(3)給定三個(gè)正實(shí)數(shù),其中,問(wèn)滿足怎樣的關(guān)系時(shí),以為邊長(zhǎng),為外接圓半徑的不存在,存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過(guò)點(diǎn),焦點(diǎn),圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P.
①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);
②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:,q: ≤0.
(1)若p是q的充分而不必要條件,求實(shí)數(shù)m的取值范圍;
(2)若q是p的必要而不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寧德市某汽車(chē)銷(xiāo)售中心為了了解市民購(gòu)買(mǎi)中檔轎車(chē)的意向,在市內(nèi)隨機(jī)抽取了100名市民為樣本進(jìn)行調(diào)查,他們?cè)率杖?單位:千元)的頻數(shù)分布及有意向購(gòu)買(mǎi)中檔轎車(chē)人數(shù)如下表:
月收入 | [3,4) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
頻數(shù) | 6 | 24 | 30 | 20 | 15 | 5 |
有意向購(gòu)買(mǎi)中檔轎車(chē)人數(shù) | 2 | 12 | 26 | 11 | 7 | 2 |
將月收入不低于6千元的人群稱(chēng)為“中等收入族”,月收入低于6千元的人群稱(chēng)為“非中等收入族”.
(Ⅰ)在樣本中從月收入在[3,4)的市民中隨機(jī)抽取3名,求至少有1名市民“有意向購(gòu)買(mǎi)中檔轎車(chē)”的概率.
(Ⅱ)根據(jù)已知條件完善下面的2×2列聯(lián)表,并判斷有多大的把握認(rèn)為有意向購(gòu)買(mǎi)中檔轎車(chē)與收入高低有關(guān)?
非中等收入族 | 中等收入族 | 總計(jì) | |||||
有意向購(gòu)買(mǎi)中檔轎車(chē)人數(shù) | 40 | ||||||
無(wú)意向購(gòu)買(mǎi)中檔轎車(chē)人數(shù) | 20 | ||||||
總計(jì) | 100 | ||||||
0.10 | 0.05 | 0.010 | 0.005 | ||||
2.706 | 3.841 | 6.635 | 7.879 | ||||
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,是橢圓上在第二象限內(nèi)的一點(diǎn),且直線的斜率為.
(1)求點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點(diǎn),是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)的一次月考成績(jī)中隨機(jī)抽取了名學(xué)生的成績(jī)(滿分分),這名學(xué)生的成績(jī)都在內(nèi),按成績(jī)分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)求圖中的值;
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)該校高一年級(jí)本次考試成績(jī)的平均分;
(3)用分層抽樣的方法從成績(jī)?cè)?/span>內(nèi)的學(xué)生中抽取人,再?gòu)倪@人中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,求月考成績(jī)?cè)?/span>內(nèi)至少有名學(xué)生被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在上的函數(shù),滿足,為奇函數(shù),且,則不等式的解集為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于,兩點(diǎn),則二面角的正切值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com