(本小題滿分12分)
已知直線過橢圓的右焦點,拋物線:的焦點為橢圓的上頂點,且直線交橢圓、兩點,點、、 在直線上的射影依次為點、
(1)求橢圓的方程;
(2)若直線ly軸于點,且,當(dāng)變化時,探求的值是否為定值?若是,求出的值,否則,說明理由;
(3)連接、,試探索當(dāng)變化時,直線是否相交于定點?若是,請求出定點的坐標(biāo),并給予證明;否則,說明理由.

(1)
(2)
(3)
解:(Ⅰ)易知橢圓右焦點
拋物線的焦點坐標(biāo)
橢圓的方程
(Ⅱ)易知,且軸交于,
設(shè)直線交橢圓于



又由
  同理

∵               

所以,當(dāng)變化時, 的值為定值;
(Ⅲ)先探索,當(dāng)時,直線軸,
為矩形,由對稱性知,相交的中點,且,
猜想:當(dāng)變化時,相交于定點
證明:由(Ⅱ)知,∴
當(dāng)變化時,首先證直線過定點,
方法1)∵
當(dāng)時,

∴點在直線上,
同理可證,點也在直線上;
∴當(dāng)變化時,相交于定點
方法2)∵,


,∴、、三點共線,同理可得、、也三點共線;
∴當(dāng)變化時,相交于定點
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
過橢圓的右焦點F作斜率為與橢圓交于A、B兩點,且坐標(biāo)原點O到直線l的距離d滿足:
(I)證明點A和點B分別在第一、三象限;
(II)若的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分) 已知點是⊙上的任意一點,過垂直軸于,動點滿足.
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)橢圓焦點坐標(biāo)為F1(-c,0), F2(c,0),點Q是橢圓短軸上的頂點,且滿足
(1)求橢圓的方程;
(2)設(shè)A,B是圓與與y軸的交點,是橢圓上的任一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓C的焦點為,長軸長為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)求橢圓的長軸和短軸的長、離心率、焦點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的兩個焦點及其與坐標(biāo)軸的一個交點正好是一個等邊三角形的三個頂點,且橢圓上的點到焦點距離的最小值為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的左焦點的弦AB的長為3,,則該橢圓的離心率為            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)設(shè)、分別是橢圓的左、右焦點,過且斜率為的直線相交于、兩點,且、、成等差數(shù)列.
(1)若,求的值;
(2)若,設(shè)點滿足,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案