【題目】已知函數(shù).若曲線和曲線都過(guò)點(diǎn),且在點(diǎn)處有相同的切線.
(Ⅰ)求的值;
(Ⅱ)若時(shí), ,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)由已知得,即可求解的值;
(Ⅱ)由(Ⅰ)知,設(shè),求得,根據(jù)題意,得,利用導(dǎo)數(shù)分類討論,的奧函數(shù)的單調(diào)性與最值,即可求得實(shí)數(shù)的取值范圍.
試題解析:
(Ⅰ)由已知得
(Ⅱ)由(Ⅰ)知, ,
設(shè),
則
由題意知, ,即,
令,則,
當(dāng)即時(shí),
由得, ,
由得, ,
所以在單調(diào)遞減,在單調(diào)遞增,
所以在區(qū)間上的最小值,
所以當(dāng)時(shí), 即恒成立.
當(dāng)即時(shí), 恒成立,即在單調(diào)遞增,
所以在區(qū)間上的最小值,
所以當(dāng)時(shí), 即恒成立.
當(dāng)即時(shí), 恒成立即在單調(diào)遞增,
所以在區(qū)間上的最小值,
所以當(dāng)時(shí), 不可能恒成立.
綜上所示, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,斜率為1的直線l交橢圓于A、B兩點(diǎn),且線段AB的中點(diǎn)坐標(biāo)為.
求橢圓的方程;
若P是橢圓與雙曲線在第一象限的交點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,E是PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個(gè)研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽(yù)為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,頂點(diǎn)在底面上的射影恰為點(diǎn),且
(1)證明:平面平面;
(2)求棱與所成的角的大。
(3)若點(diǎn)為的中點(diǎn),并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,將△ABD沿對(duì)角線BD折起,設(shè)折起后點(diǎn)A的位置為A′,使二面角A′—BD—C為直二面角,給出下面四個(gè)命題:①A′D⊥BC;②三棱錐A′—BCD的體積為;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*)
(1)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(2)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把電影院的4張電影票隨機(jī)地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得4排1號(hào)”與事件“乙分得4排1號(hào)”是( )
A.對(duì)立事件B.不可能事件C.互斥但不對(duì)立事件D.以上答案都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com