已知點M(2數(shù)學(xué)公式,1)在橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)上,橢圓的兩個焦點F1(-2數(shù)學(xué)公式,0)和F2(2數(shù)學(xué)公式,0),斜率為-1的直線l與橢圓C相交于不同的P、Q兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點B的坐標(biāo)為(0,2),是否存在直線l,使△BPQ為以PQ為底邊的等腰三角形?若存在,求出直線l的方程;若不存在,請說明理由.

解:(Ⅰ)依題意知,半焦距c=2,由點M(2,1)在橢圓C上,得|MF2|=1,|MF1|=7;∴2a=|MF1|+|MF2|=8;∴a=4,∴b2=a2-c2=4;所以,橢圓C的方程為:+=1.
(Ⅱ)設(shè)PQ的中點為R,直線l的方程為y=-x+m;
,得5x2-8mx+4m2-16=0(*);
要使l與橢圓C相交于不同的P、Q兩點,則有△>0;
∴△=(-8m)2-4×5(4m2-16)=16(-m2+20)>0,
化簡,得|m|<2. ①
由(*)知:xR==m,yR=-xR+m=m.
且|BP|=|BQ|,所以BR⊥PQ,即kRQ•(-1)=-1;
所以==1,解得m=-
因為<2,所以m=-適合①.
所以存在滿足條件的直線l;y=-x-
分析:(Ⅰ)由半焦距c=2,點M(2,1)在橢圓C上,可得|MF2|,|MF1|;由|MF1|+|MF2|=2a,可得a的值,從而得橢圓C的方程.
(Ⅱ)設(shè)PQ的中點為R,直線l的方程為y=-x+m;由,得5x2-8mx+4m2-16=0(*);要使l與橢圓C相交于不同的P、Q兩點,則有△>0,可得|m|<2 ①,由(*)和中點坐標(biāo)知xR,yR;且|BP|=|BQ|,得BR⊥PQ,即得kRQ的值;從而解得m的值,得滿足條件的直線l.
點評:本題考查了直線與橢圓標(biāo)準(zhǔn)方程的綜合應(yīng)用問題,解題時要弄清題中所給的條件,靈活運用橢圓的定義,根與系數(shù)的關(guān)系式,以及中點坐標(biāo)公式來進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(2
3
,1)在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上,橢圓的兩個焦點F1(-2
3
,0)和F2(2
3
,0),斜率為-1的直線l與橢圓C相交于不同的P、Q兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點B的坐標(biāo)為(0,2),是否存在直線l,使△BPQ為以PQ為底邊的等腰三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點P(x,y)滿足約束條件:
7x-5y-23≤0
x+7y-11≤0
4x+y+10≥0

(1)在給定的坐標(biāo)系中畫出滿足約束條件的可行域 (用陰影表示,并注明邊界的交點);
(2)設(shè)u=
y+7
x+4
,求u的取值范圍;
(3)已知兩點M(2,1),O(0,0),求
OM
OP
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點M(2
3
,1)在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上,橢圓的兩個焦點F1(-2
3
,0)和F2(2
3
,0),斜率為-1的直線l與橢圓C相交于不同的P、Q兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點B的坐標(biāo)為(0,2),是否存在直線l,使△BPQ為以PQ為底邊的等腰三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省青島市平度一中高二(上)第二次段考數(shù)學(xué)試卷(文科) (解析版) 題型:解答題

已知點M(2,1)在橢圓C:+=1(a>b>0)上,橢圓的兩個焦點F1(-2,0)和F2(2,0),斜率為-1的直線l與橢圓C相交于不同的P、Q兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點B的坐標(biāo)為(0,2),是否存在直線l,使△BPQ為以PQ為底邊的等腰三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案