在直角坐標系中,為坐標原點,如果一個橢圓經(jīng)過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

(1);(2).

解析試題分析:(1)既然是求橢圓的標準方程,那么另一個焦點必定是點,,,即,,可得橢圓標準方程為;(2)只要知道本題中(斜率存在時),利用這個等式可迅速求出結(jié)論,
試題解析:(1)設(shè)橢圓方程為:
則有: 解得:,
故所求橢圓方程為.                5分
(2)設(shè)
則有,
兩式相減,當時,,又因為,
,整理得:,當時,中點滿足上式.
綜上所述,所求軌跡方程為.                10分
考點:(1)橢圓的標準方程;(2)軌跡方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓及定點,點是圓上的動點,點上,且滿足,點的軌跡為曲線
(1)求曲線的方程;
(2)若點關(guān)于直線的對稱點在曲線上,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內(nèi)),又、是此橢圓上兩點,并且滿足,求證:向量共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,且離心率
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),橢圓的右頂點為D,且滿足,試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,若焦點在軸上的橢圓 過點,且其長軸長等于圓的直徑.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線,與圓交于、兩點,交橢圓于另一點,設(shè)直線的斜率為,求弦長;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當DAOB的面積等于時,求k的值. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為

(Ⅰ)求拋物線的方程;
(Ⅱ)當的角平分線垂直軸時,求直線的斜率;
(Ⅲ)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設(shè)點P、F1、F2關(guān)于直線y=x的對稱點分別為,求以為焦點且過點的雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是拋物線上的點,的焦點, 以為直徑的圓軸的另一個交點為.
(Ⅰ)求的方程;
(Ⅱ)過點且斜率大于零的直線與拋物線交于兩點,為坐標原點,的面積為,證明:直線與圓相切.

查看答案和解析>>

同步練習冊答案