設(shè)集合A={x,y,x+y},B={0,x2,xy},且A=B,求實數(shù)x,y的值.
考點:集合的相等
專題:計算題,集合
分析:根據(jù)集合相等的定義,當集合A=B時,集合A={x,y,x+y},B={0,x2,xy},中元素對應相等,由此我們可以分類討論構(gòu)造不同的方程組,然后根據(jù)集合元素的性質(zhì)排除不滿足情況的答案,即可得到結(jié)論.
解答: 解:由題意,x=0不符合;
x=x2時,x=1(x=0舍去),集合A={1,y,1+y},B={0,1,y},∵A=B,∴y=-1;
x=xy時,y=1(x=0舍去),集合A={x,1,1+x},B={0,x2,x},∵A=B,∴x=-1.
點評:本題考查的知識點是集合相等的定義,其中易忽略集合元素的互異性,而產(chǎn)生增根.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列{an}的前n項和為f(n)-c,數(shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若數(shù)列{
1
bnbn+1
}的前n項和為Tn,問滿足Tn
1003
2012
的最小值n是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈S,1∉S,
1
1-a
∈S,求證:1-
1
a
∈S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且滿足:a1=b1=1,同時有a3+b2=5,a2+b3=6
(1)求{an},{bn}的通項公式;
(2)求數(shù)列{
an
bn
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求a4;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個命題:
①面DBC是等邊三角形;  
②AC⊥BD;
③三棱錐D-ABC的體積是
2
6

其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求證:已知:a>0,求證:
a+5
-
a+3
a+6
-
a+4

(2)已知a,b,c均為實數(shù)且a=x2+2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,四邊形ABCD為正方形,PD⊥面ABCD,PD=DA=2,F(xiàn),E分別為AD,PC的中點.
(1)證明:DE∥面PFB.          
(2)求點E到平面PFB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx,當x2>x1>0時,給出以下幾個結(jié)論:
①(x1-x2)•[f(x1)-f(x2)]<0
f(x1)-f(x2)
x1-x2
<1
③f(x1)+x2<f(x2)+x1
④x2f(x1)<x1f(x2);
⑤當lnx1>-1時,x1f(x1)+x2f(x2)>2x2f(x1
其中正確的是
 

查看答案和解析>>

同步練習冊答案