【題目】中國神舟十一號載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國轟動.開學后,某校高二年級班主任對該班進行了一次調(diào)查,發(fā)現(xiàn)全班60名同學中,對此事關注的占,他們在本學期期末考試中的物理成績(滿分100分)如下面的頻率分布直方圖:

(1)求“對此事關注”的同學的物理期末平均分(以各區(qū)間的中點代表該區(qū)間的均值).

(2)若物理成績不低于80分的為優(yōu)秀,請以是否優(yōu)秀為分類變量,

①補充下面的列聯(lián)表:

物理成績優(yōu)秀

物理成績不優(yōu)秀

合計

對此事關注

對此事不關注

合計

②是否有以上的把握認為“對此事是否關注”與物理期末成績是否優(yōu)秀有關系?

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1);(2)列聯(lián)表見解析,沒有.

【解析】試題分析:(1)各小矩形中點橫坐標與縱坐標的乘積的和即是對此事關注的同學的物理期末平均分;(2)根據(jù)直方圖求出列聯(lián)表所需數(shù)據(jù),即可完成列聯(lián)表,利用公式求得 ,與鄰界值比較,即可得到結論.

試題解析:(1)對此事關注的同學的物理期末平均分為

(分).

(2)①補充的列聯(lián)表如下:

物理成績優(yōu)秀

物理成績不優(yōu)秀

合計

對此事關注

8

12

20

對此事不關注

8

32

40

合計

16

44

60

②由①中的列聯(lián)表可得

所以沒有以上的把握認為“對此事是否關注”與物理期末成績是否優(yōu)秀有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C: (a>0,b>0)過點A(1,0),且離心率為
(1)求雙曲線C的方程;
(2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,把函數(shù)g(x)=f(x)﹣x的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為( )
A.
B.an=n﹣1
C.an=n(n﹣1)
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an},{bn}滿足a1=3,a2=6,{bn}是等差數(shù)列,且對任意正整數(shù)n,都有 成等比數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)設 ,試比較2Sn 的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個學校高三年級分別有1100人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)二?荚嚨臄(shù)學成績清況,采用分層抽樣方法從兩個學校一共抽取了105名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

乙校:

(1)計算的值;

(2)若規(guī)定考試成績在內(nèi)為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學成績的優(yōu)秀率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認為兩個學校的數(shù)學成績有差異.

附: ; .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=x2﹣4px﹣2的圖象過點A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.

(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若A,B,C成等差數(shù)列,2a,2b,2c成等比數(shù)列,則cosAcosB=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案