【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若A,B,C成等差數(shù)列,2a,2b,2c成等比數(shù)列,則cosAcosB=( )
A.
B.
C.
D.

【答案】A
【解析】解:由A,B,C成等差數(shù)列,有2B=A+C(1)
∵A,B,C為△ABC的內(nèi)角,∴A+B+C=π(2).
由(1)(2)得B=
由2a,2b,2c成等比數(shù)列,得b2=ac,
由余弦定理得,b2=a2+c2﹣2accosB
把B= 、b2=ac代入得,a2+c2﹣ac=ac,
即(a﹣c)2=0,則a=c,從而A=C=B= ,
∴cosAcosB= = ,
故選A.
先根據(jù)A,B,C成等差數(shù)列和三角形內(nèi)角和定理求出B的值,根據(jù)等比中項的性質(zhì)可知b2=ac代入余弦定理求得a2+c2﹣ac=ac,整理求得a=c,即得A=C,最后利用三角形內(nèi)角和定理求出A和C,最后求出式子的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中國神舟十一號載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國轟動.開學后,某校高二年級班主任對該班進行了一次調(diào)查,發(fā)現(xiàn)全班60名同學中,對此事關注的占,他們在本學期期末考試中的物理成績(滿分100分)如下面的頻率分布直方圖:

(1)求“對此事關注”的同學的物理期末平均分(以各區(qū)間的中點代表該區(qū)間的均值).

(2)若物理成績不低于80分的為優(yōu)秀,請以是否優(yōu)秀為分類變量,

①補充下面的列聯(lián)表:

物理成績優(yōu)秀

物理成績不優(yōu)秀

合計

對此事關注

對此事不關注

合計

②是否有以上的把握認為“對此事是否關注”與物理期末成績是否優(yōu)秀有關系?

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有教職工500人,對他們進行年齡狀況和受教育程度的調(diào)查,其結果如下:

高中

?

本科

研究生

合計

35歲以下

10

150

50

35

245

35﹣50

20

100

20

13

153

50歲以上

30

60

10

2

102

隨機的抽取一人,求下列事件的概率:
(1)50歲以上具有?苹?qū)?埔陨蠈W歷;
(2)具有本科學歷;
(3)不具有研究生學歷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的圖象的一條對稱軸方程是(
A.x=
B.x=
C.x=π
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù)x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為10,則a2+b2的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知數(shù)列{an}的前n項和Sn= ,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設bn=2an+(﹣1)nan , 求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記關于x的不等式 的解集為P,不等式|x+2|<3的解集為Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在區(qū)間[ ,π]上為增函數(shù),求實數(shù)ω的取值范圍.

查看答案和解析>>

同步練習冊答案