已知雙曲線C的中心為坐標原點O,焦點F1、F­2x軸上,點P在雙曲線的左支上,點

M在右準線上,且滿足

(Ⅰ)求雙曲線C的離心率e;

(Ⅱ)若雙曲線C過點Q(2,),B1、B2是雙曲線虛軸的上、下端點,點A、B是雙曲線上不同的兩點,且,求直線AB的方程.

解:(I)設雙曲線C的方程為

       

(II)由(I)知

、B2B三點共線.

(1)當直線AB垂直軸時,不合題意.

(2)當直線AB不垂直軸時,由

可設直線AB的方程為    ①

直線B1B的方程為   ②

由①,②知,代入雙曲線方程得

故直線AB的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知雙曲線C的中心為坐標原點O,焦點F1、F2在x軸上,點P在雙曲線的左支上,點M在右準線上,且滿足
F1O
=
PM
,|
OF1
|=|
OM
|

(Ⅰ)求雙曲線C的離心率e;
(Ⅱ)若雙曲線C過點Q(2,
3
),B1、B2是雙曲線虛軸的上、下端點,點A、B是雙曲線上不同的兩點,且
B2A
B2B
,
B2A
B1B
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的中心為原點,點F(
2
,0)
是雙曲線C的一個焦點,過點F作漸近線的垂線l,垂足為M,直線l交y軸于點E,若
FM
=
ME
,則C的方程為
x2-y2=1
x2-y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年崇文區(qū)一模理)(13分)  已知雙曲線C的中心為坐標原點O,焦點F1、F­2x軸上,點P在雙曲線的左支上,點

M在右準線上,且滿足

       (Ⅰ)求雙曲線C的離心率e;

       (Ⅱ)若雙曲線C過點Q(2,),B1、B2是雙曲線虛軸的上、下端點,點A、B是雙曲線上不同的兩點,且,求直線AB的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年云南省昆明市高三復習適應性檢測數(shù)學試卷(文科)(解析版) 題型:填空題

已知雙曲線C的中心為原點,點是雙曲線C的一個焦點,過點F作漸近線的垂線l,垂足為M,直線l交y軸于點E,若,則C的方程為   

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市崇文區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知雙曲線C的中心為坐標原點O,焦點F1、F2在x軸上,點P在雙曲線的左支上,點M在右準線上,且滿足
(Ⅰ)求雙曲線C的離心率e;
(Ⅱ)若雙曲線C過點Q(2,),B1、B2是雙曲線虛軸的上、下端點,點A、B是雙曲線上不同的兩點,且,求直線AB的方程.

查看答案和解析>>

同步練習冊答案