【題目】已知函數(shù) 的最小正周期為 ,將函數(shù) 的圖象向左平移 個(gè)單位長(zhǎng)度,再向下平移 個(gè)單位長(zhǎng)度,得到函數(shù) 的圖象.
(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角 中,角 的對(duì)邊分別為 .若 , ,求 面積的最大值.

【答案】解:(Ⅰ)由題得, .由最小正周期為 ,得 .
.由 , ,得 , .
故函數(shù) 的單調(diào)遞增區(qū)間是 , ;
(Ⅱ)∵ ,∴ .∴ .
又∵ 為銳角,∴ .
由余弦定理,得 ,∴ .
,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立.∴ .∴ 面積的最大值為
【解析】(1)首先由兩角和差的正弦公式整理代數(shù)式即可得到f(x)= s i n ( 2 ω x ) ,借助周期公式即可求出 ω 的值。由正弦型函數(shù)的單調(diào)性利用整體思想即可求出x的取值范圍,即為函數(shù) f ( x ) 的單調(diào)遞增區(qū)間。(2)由特殊值法代入數(shù)值求出s i n A的值,進(jìn)而得到 c o s A的值再由余弦定理以及基本不等式得到bc的最大值,代入到三角形的面積公式中,進(jìn)而求出面積的最大值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形 中,點(diǎn) 在線段 上, , ,沿直線 翻折成 ,使點(diǎn) 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面
(Ⅱ)求二面角 的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 處的切線斜率為2.
(Ⅰ)求 的單調(diào)區(qū)間和極值;
(Ⅱ)若 上無(wú)解,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 短軸兩個(gè)端點(diǎn)為 且四邊形 是邊長(zhǎng)為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn) 滿足 ,連接 ,交橢圓于點(diǎn) .證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為常數(shù))與 軸有唯一的公關(guān)點(diǎn)
(Ⅰ)求函數(shù) 的單調(diào)區(qū)間;
(Ⅱ)曲線 在點(diǎn) 處的切線斜率為 ,若存在不相等的正實(shí)數(shù) ,滿足 ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點(diǎn) 為曲線 上一點(diǎn),求點(diǎn) 到直線 的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為 元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
求一輛普通6座以下私家車(chē)(車(chē)險(xiǎn)已滿三年)在下一年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元.且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,ACBD相交于點(diǎn)O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BDE所成的角為45°時(shí),求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】博鰲亞洲論壇2015年會(huì)員大會(huì)于3月27日在海南博鰲舉辦,大會(huì)組織者對(duì)招募的100名服務(wù)志愿者培訓(xùn)后,組織一次 知識(shí)競(jìng)賽,將所得成績(jī)制成如右頻率分布直方圖(假定每個(gè)分?jǐn)?shù)段內(nèi)的成績(jī)均勻分布),組織者計(jì)劃對(duì)成績(jī)前20名的參賽者進(jìn)行獎(jiǎng)勵(lì).

(1)試確定受獎(jiǎng)勵(lì)的分?jǐn)?shù)線;
(2)從受獎(jiǎng)勵(lì)的20人中利用分層抽樣抽取5人,再?gòu)某槿〉?人中抽取2人在主會(huì)場(chǎng)服務(wù),試求2人成績(jī)都在90分以上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案