若平面區(qū)域Ω:
2x-y+2≥0
y-2≤0
y≥k(x+1)
的面積為3,則實數(shù)k的值為( 。
A、
1
3
B、
1
2
C、
4
5
D、
3
2
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,根據(jù)平面區(qū)域的面積,建立方程關系,即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
∵y=k(x+1)過定點B(-1,0),
∴根據(jù)圖象可知k<kAB,
即k<2,
由圖象可知A(0,2),
y=2
y=k(x+1)
x=
2-k
k
>0
y=2
,
即|AC|=
2-k
k

∴三角形的面積為
1
2
×
2-k
k
×2
=
2-k
k
=3,
解得k=
1
2

故選:B
點評:本題主要考查二元一次不等式組表示平面區(qū)域以及三角形面積的計算,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,雙曲線的中心在坐標原點O,A,C分別是雙曲線虛軸的上下頂點,B是雙曲線的左頂點,F(xiàn)為雙曲線的左焦點,直線AB與FC相交于點D.若雙曲線的離心率為2,則∠BDF的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設經(jīng)過拋物線C的焦點的直線l與拋物線C交于A、B兩點,那么拋物線C的準線與以AB為直徑的圓的位置關系為( 。
A、相離B、相切
C、相交但不經(jīng)過圓心D、相交且經(jīng)過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的是(  )
A、當直線l1與l2的斜率k1,k2滿足k1•k2=-1時,兩直線一定垂直
B、直線Ax+By+C=0的斜率為-
A
B
C、過(x1,y1),(x2,y2)兩點的所有直線的方程
y-y1
y2-y1
=
x-x1
x2-x1
D、經(jīng)過點(1,1)且在x軸和y軸上截距都相等的直線方程為x+y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β為兩個平面,且α⊥β,l為直線.則l⊥β是l∥α的( 。
A、必要而不充分條件
B、充分而不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
y≥x
x+y≤2
x≥a
,且目標函數(shù)z=2x+y的最大值是最小值的8倍,則實數(shù)a的值是(  )
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4
2
x的焦點為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,且橢圓的長軸長為4,M、N是橢圓上的動點
(1)求橢圓標準方程;
(2)設動點P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,證明:存在定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值,并求出F1,F(xiàn)2的坐標;
(3)若M在第一象限,且點M,N關于原點對稱,MA垂直于x軸于點A,連接NA 并延長交橢圓于點B,記直線MN,MB的斜率分別為kMN,kMB,證明:kMN•kMB+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x2-1)=logm
x2
2-x2
(m>O且m≠1)
(1)求函數(shù)f(x)的解析式,并判斷奇偶性;
(2)解關于x的方程f(x)=logm
1
x

(3)若m>1,解關于x的不等式f(x)≥logm(3x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列說法:
①函數(shù)y=-cos2x的最小正周期是π;
②終邊在y軸上的角的集合是{a|a=
2
, k∈Z}
;
③在同一直角坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
個單位長度得到函數(shù)y=3sin2x的圖象;
⑤函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù).
其中,正確的說法是
 

查看答案和解析>>

同步練習冊答案