如圖,雙曲線的中心在坐標原點O,A,C分別是雙曲線虛軸的上下頂點,B是雙曲線的左頂點,F(xiàn)為雙曲線的左焦點,直線AB與FC相交于點D.若雙曲線的離心率為2,則∠BDF的余弦值是
 
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質與方程
分析:利用雙曲線的簡單性質求出直線方程,求出三角形三個頂點的坐標,利用余弦定理求得cos∠BDF的值.
解答: 解答:解:由題意得A(0,b),C(0,-b),B(-a,0),F(xiàn)(-c,0),
c
a
=2.
∴BF=c-a=a,BD 的方程為
x
-a
+
y
b
=1,即bx-ay+ab=0,
DC的方程為 
x
-c
+
y
-b
=1,即 bx+cy+bc=0,即 bx+2ay+2ab=0,
bx-ax=ab=0
bx+2ay+2ab=0
,
得 D(-
4a
3
,-
b
3
),又 b=
c2-a2
=
3
a,
∴FD=
(-c+
4
3
a)2+
b2
9
=
7a2
9
,
BD=
(-a+
4
3
a)2+
b2
9
=
4a2
9
,
三角形BDF中,由余弦定理得 a2=
7
9
a2+
4
9
a2-2
7
9
a2
4
9
a2
cos∠BDF,
∴cos∠BDF=
7
14

故答案為:
7
14
點評:本題考查角的余弦值的求法,是中檔題,解題時要注意余弦定理和雙曲線簡單性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1(-c,0)、F2(c,0)是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點,點M在橢圓E上.
(Ⅰ)若∠F1MF2的最大值是
π
2
,求橢圓E的離心率;
(Ⅱ)設直線x=my+c與橢圓E交于P、Q兩點,過P、Q兩點分別作橢圓E的切線l1,l2,且l1與l2交于點R,試問:當m變化時,點R是否恒在一條定直線上?若是,請寫出這條直線方程,并證明你的結論;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
4
=1(a>0)的中心為原點O,左,右焦點分別為F1,F(xiàn)2,離心率為
3
5
5
,點P是直線x=
a2
3
上任意一點,點Q在雙曲線E上,且滿足
PF2
QF2
=0.
(1)求實數(shù)a的值;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)若點P的縱坐標為1,過點P作動直線l與雙曲線右支交于不同兩點M,N,在線段MN上取異于點M,N的點H,滿足
|PM|
|PN|
=
|MH|
|HN|
,證明點H恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且點(
2
,
6
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點A,B分別是橢圓C的左右頂點,直線經過點B且垂直于x軸,點P是橢圓C上異于點A,B的任意一點,直線AP交于點M,設直線OM,PB的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠BAC在平面α內,PA是α的斜線,若∠PAB=∠PAC=∠BAC=60°,PA=a,則點P到α的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當x>0時f(x)=x2-2x,若關于x的方程f(x)=a有且僅有2個解,則實數(shù)a等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①若
AB
=
DC
,則A、B、C、D四點是平行四邊形的四個頂點;
②已知非零向量
AB
AC
滿足(
AB
|
AB
|
+
AC
|AC|
)•
BC
=0,且
AB
|
AB
|
AC
|AC|
=
1
2
,則△ABC為等邊三角形;
③已知向量
a
=(-2,1)
,
b
=(-3,0)
,則
a
b
方向上的投影為2;
④y=sin|x|的周期為π;
⑤若向量
m
n
,
n
k
,則向量
m
k

其中不正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足條件
x≥0
y≤-x+3
y≥2x
,則
y
x-2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面區(qū)域Ω:
2x-y+2≥0
y-2≤0
y≥k(x+1)
的面積為3,則實數(shù)k的值為( 。
A、
1
3
B、
1
2
C、
4
5
D、
3
2

查看答案和解析>>

同步練習冊答案