如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點(diǎn),過F1的直線的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為
A.B.C.2D.
A

試題分析:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,
∵|AB|2+|BF2|2=|AF2|2
∴∠ABF2=90°,
又由雙曲線的定義得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,
∴|AF1|+3-4=5-|AF1|,
∴|AF1|=3.
∴|BF1|-|BF2|=3+3-4=2a,
∴a=1.
在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2,
∴4c2=52,∴c=
∴雙曲線的離心率e=
點(diǎn)評:本題考查雙曲線的簡單性質(zhì),求得a與c的值是關(guān)鍵,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知焦點(diǎn)在x軸上的雙曲線的漸近線方程為y= ±,則此雙曲線的離心率為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是非零實(shí)數(shù),則方程所表示的圖形可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中為坐標(biāo)原點(diǎn))

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),當(dāng)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若關(guān)于的方程的三個(gè)根可分別作為一個(gè)橢圓、雙曲線、拋物線的離心率,則的取值范圍為         . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點(diǎn)A(0, a)(a>0)作圓C2的切線AD,切點(diǎn)為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點(diǎn),求點(diǎn)A縱坐標(biāo)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動點(diǎn)M的坐標(biāo)滿足,則動點(diǎn)M的軌跡方程是
A.橢圓B.雙曲線C.拋物線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知動圓P(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線相切。記動點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)的直線與橢圓交于,兩點(diǎn).
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案