【題目】已知曲線C1 (t為參數(shù))C2 (θ為參數(shù)).若曲線C1上的點P對應(yīng)的參數(shù)為t,Q為曲線C2上的動點,則線段PQ的中點M到直線C3 (t為參數(shù))距離的最小值為________

【答案】

【解析】曲線C1的普通方程為(x4)2(y3)21,曲線C2的普通方程為,曲線C1為圓心是(4,3),半徑是1的圓.曲線C2為中心是坐標原點,焦點在x軸上,長半軸長是8,短半軸長是3的橢圓.當t時,點P的坐標為(4,4)Q為曲線C2上的動點,

設(shè)Q(8cos θ3sin θ),故M(24cos θ,2sin θ),

直線C3的參數(shù)方程化為普通方程為x2y70

M到直線C3的距離d|4cos θ3sin θ13|,

從而cosθsin θ時,d取得最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),下列說法正確的有(

處取得極大值;有兩個不同的零點;

;④若上恒成立,則.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩位同學8次數(shù)學單元測試的成績構(gòu)成如下所示的莖葉圖,且甲同學成績的平均數(shù)比乙同學成績的平均數(shù)小2.

(1)求m的值以及乙同學成績的方差;

(2)若數(shù)學測試的成績高于85分(含85分),則視為優(yōu)秀.現(xiàn)對乙同學的成績進行深入分析,在乙同學的優(yōu)秀成績中任取2次成績,求至少有一次抽取的成績超過90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校為了讓高一學生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學習,同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數(shù)學教研組通過系統(tǒng)抽樣抽取了名學生,并統(tǒng)計了他們這兩次數(shù)學考試的優(yōu)良人數(shù)和非優(yōu)良人數(shù),其中部分統(tǒng)計數(shù)據(jù)如下:

(1)請畫出這次調(diào)查得到的列聯(lián)表;并判定能否在犯錯誤概率不超過的前提下認為周六到校自習對提高學生成績有效?

(2)從這組學生摸底考試中數(shù)學優(yōu)良成績中和第一次月考的數(shù)學非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.

下面是臨界值表供參考:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個推理中,屬于演繹推理的是( 。

A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43

B. 觀察,可得偶函數(shù)的導函數(shù)為奇函數(shù)

C. 在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積之比為1:8

D. 已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校400名學生在一次百米賽跑測試中,成績?nèi)慷荚?2秒到17秒之間,現(xiàn)抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖所示的是按上述分組方法得到的頻率分布直方圖.

(1)請估計該校400名學生中,成績屬于第三組的人數(shù);

(2)請估計樣本數(shù)據(jù)的中位數(shù)(精確到0.01);

(3)若樣本第一組中只有一名女生,其他都是男生,第五組則只有一名男生,其他都是女生,現(xiàn)從第一、第五組中各抽取2名同學組成一個特色組,設(shè)其中男同學的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設(shè)動點P的軌跡為曲線C,過點F的直線交曲線C于AB兩個不同的點,過點AB分別作曲線C的切線,且二者相交于點M

(Ⅰ)求曲線C的方程;

()求證: ;

(Ⅲ)△ABM的面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,值域是.

(Ⅰ)求證: ;

(Ⅱ)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , 的中點

(Ⅰ)求證: ;

(Ⅱ)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

同步練習冊答案