【題目】動點(diǎn)P到定點(diǎn)F(0,1)的距離比它到直線的距離小1,設(shè)動點(diǎn)P的軌跡為曲線C,過點(diǎn)F的直線交曲線C于A、B兩個(gè)不同的點(diǎn),過點(diǎn)A、B分別作曲線C的切線,且二者相交于點(diǎn)M.
(Ⅰ)求曲線C的方程;
(Ⅱ)求證: ;
(Ⅲ)求△ABM的面積的最小值.
【答案】(Ⅰ) (Ⅱ)見解析(Ⅲ)4.
【解析】試題分析:(1)利用定義判斷出曲線為拋物線.(2)設(shè)出點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)分別求出過點(diǎn)的切線方程,求出交點(diǎn)的坐標(biāo)為,聯(lián)立直線和拋物線的方程,利用韋達(dá)定理算出,從而得到,利用向量可以計(jì)算,所以.(3)利用焦半徑公式和點(diǎn)到直線的距離可以求得,從而求得面積的最小值為.
解析:(Ⅰ)由已知,動點(diǎn)在直線上方,條件可轉(zhuǎn)化為動點(diǎn)到定點(diǎn)的距離等于它到直線距離,∴動點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,故其方程為.
(Ⅱ)證:設(shè)直線的方程為: ,由 得: ,設(shè),則 , .由 得: ,∴直線的方程為: ①,
直線的方程為: ②,
①-②得: ,即 ,
將 代入①得: , ,故,
, .
(Ⅲ)解:由(Ⅱ)知,點(diǎn)到的距離, , ,∴當(dāng)時(shí), 的面積有最小值4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:
交強(qiáng)險(xiǎn)浮動因素和浮動費(fèi)率比率表 | ||
浮動因素 | 浮動比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)購為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=kex﹣x3+2 (k∈R)恰有三個(gè)極值點(diǎn)xl,x2,x3,且xl<x2<x3.
(I)求k的取值范圍:
(II)求f(x2)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1: (t為參數(shù)),C2: (θ為參數(shù)).若曲線C1上的點(diǎn)P對應(yīng)的參數(shù)為t=,Q為曲線C2上的動點(diǎn),則線段PQ的中點(diǎn)M到直線C3: (t為參數(shù))距離的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),判斷直線與曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假設(shè)根據(jù)上表數(shù)據(jù)所得的線性回歸方程為=x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( )
A. >b′,>a′ B. >b′,<a′
C. <b′,>a′ D. <b′,<a′
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若a,b,c為直角三角形的三邊,其中c為斜邊,則a2+b2=c2,稱這個(gè)定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體O-ABC中,∠AOB=∠BOC=∠COA=90°,S為頂點(diǎn)O所對面的面積,S1,S2,S3分別為側(cè)面△OAB,△OAC,△OBC的面積,則下列選項(xiàng)中對于S,S1,S2,S3滿足的關(guān)系描述正確的為( )
A. S2=S+S+S B.
C. S=S1+S2+S3 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是圓內(nèi)的一個(gè)定點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時(shí),點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn), ,直線與軸交于點(diǎn),直線與軸交于點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com