【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),判斷直線與曲線的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),判斷直線與曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面四個(gè)推理中,屬于演繹推理的是( )
A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43
B. 觀察,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C. 在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積之比為1:8
D. 已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為(單位:m2)( )
A. (11+4)π B. (12+4)π C. (13+4)π D. (14+4)π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)P到定點(diǎn)F(0,1)的距離比它到直線的距離小1,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)F的直線交曲線C于A、B兩個(gè)不同的點(diǎn),過(guò)點(diǎn)A、B分別作曲線C的切線,且二者相交于點(diǎn)M.
(Ⅰ)求曲線C的方程;
(Ⅱ)求證: ;
(Ⅲ)求△ABM的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,某城市的市民收入逐年增長(zhǎng),表1是該城市某銀行連續(xù)五年的儲(chǔ)蓄存款額(年底余額):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款額y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將表1的數(shù)據(jù)進(jìn)行了處理,令t=x-2 010,z=y-5,得到表2:
表2
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z關(guān)于t的線性回歸方程是________;y關(guān)于x的線性回歸方程是________;
(2)用所求回歸方程預(yù)測(cè)到2020年年底,該銀行儲(chǔ)蓄存款額可達(dá)________千億元.
(附:線性回歸方程=x+,其中=,=-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題分)
如圖, 和所在的平面互相垂直,且, .
(Ⅰ)求證: .
(Ⅱ)求直線與面所成角的大小的正弦值.
(Ⅲ)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),求三角形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com