【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再向下平移()個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(。┣蠛瘮(shù)的解析式; (ⅱ)證明:存在無窮多個(gè)互不相同的正整數(shù),使得.
【答案】(1);(2)見解析.
【解析】
(Ⅰ)因?yàn)?/span>
.
所以函數(shù)的最小正周期.
(Ⅱ)(Ⅰ)將的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象,再向下平移()個(gè)單位長(zhǎng)度后得到的圖象.
又已知函數(shù)的最大值為,所以,解得.
所以.
(Ⅱ)要證明存在無窮多個(gè)互不相同的正整數(shù),使得,就是要證明存在無窮多個(gè)互不相同的正整數(shù),使得,即.
由知,存在,使得.
由正弦函數(shù)的性質(zhì)可知,當(dāng)時(shí),均有.
因?yàn)?/span>的周期為,
所以當(dāng)()時(shí),均有.
因?yàn)閷?duì)任意的整數(shù),,
所以對(duì)任意的正整數(shù),都存在正整數(shù),使得.
亦即存在無窮多個(gè)互不相同的正整數(shù),使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線 的方程是,直線的參數(shù)方程為(為參數(shù),),設(shè), 直線與曲線交于 兩點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng)度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形中,,,,,過點(diǎn)作,交于(如圖1).現(xiàn)沿將折起,使得,得四棱錐(如圖2).
(1)求證:平面平面;
(2)若為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),且的范圍是,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國(guó)成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國(guó)之盾”,見證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國(guó)人的關(guān)注,還得到了無數(shù)外國(guó)人的關(guān)注.某單位有6位外國(guó)人,其中關(guān)注此次大閱兵的有5位,若從這6位外國(guó)人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:, 曲線C2:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. 并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度。
(1)寫出曲線C1,C2的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知點(diǎn)A是射線l:與C1的交點(diǎn),點(diǎn)B是l與C2的異于極點(diǎn)的交點(diǎn),當(dāng)在區(qū)間上變化時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為為其左、右頂點(diǎn),為橢圓上除外任意一點(diǎn),若記直線的斜率分別為
(1)求證:為定值;
(2)若橢圓的長(zhǎng)軸長(zhǎng)為,過點(diǎn)作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點(diǎn),設(shè)為與橢圓相交的弦的中點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com