【題目】某電視臺在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場參與觀眾,報名的共有12000人,分別來自4個地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計劃從中抽取60人參加現(xiàn)場節(jié)目,請設(shè)計一套抽樣方案.

【答案】見解析

【解析】

根據(jù)數(shù)據(jù)的分析可以采用分層抽樣,根據(jù)分層抽樣的方法進行設(shè)計方案即可.

解:由題意,因地區(qū)有明顯差異,故采用分層抽樣,方系如下:

第一步:分層,按地區(qū)分為四層,即甲地區(qū)乙地區(qū)丙地區(qū)丁地區(qū).

第二步:按比例確定應(yīng)從每層抽取的個體的個數(shù).因為,所以應(yīng)在甲地區(qū)抽取(人),在乙地區(qū)抽取(人),在丙地區(qū)抽取(人),在丁地區(qū)抽取(人).

第三步:在各層分別用簡單隨機抽樣法抽取樣本.

第四步:將各地區(qū)抽取的樣本合并起來,就得到一個容量為60的樣本.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個星期的概率;

(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式: )

參考數(shù)據(jù): 1092, 498

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為20個個體組成,利用下面的隨機數(shù)表選取6個個體,選取方法是從隨機數(shù)表第一行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第6個個體的編號為( )

7816

6572

0802

6314

0702

4369

1128

0598

3204

9234

4935

8200

3623

4869

6938

7481

A.08B.07C.02D.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)設(shè)函數(shù).時,若函數(shù)上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若有兩個零點,求實數(shù)的范圍;

(3)已知函數(shù)與函數(shù)的圖象關(guān)于原點對稱,如果,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當時,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若設(shè)求證:有兩個不同的零點,且.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個單位職工與身體狀態(tài)有關(guān)的某項指標,要從中抽取100名職工作為樣本,應(yīng)該怎樣抽取?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)a0時,f(x)h(x)(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(2)m2時,若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案