【題目】通過隨機(jī)詢問名不同性別的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
由算得,
參照附表,以下不正確的有( )
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
【答案】BCD
【解析】
通過所給的觀測(cè)值,同臨界值表中的數(shù)據(jù)進(jìn)行比較,發(fā)現(xiàn),即可得到結(jié)論.
∵計(jì)算,則,
∴在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”,
即正確,錯(cuò)誤;
又∵,
∴有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”錯(cuò)誤,即C錯(cuò)誤;
有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”錯(cuò)誤,即D錯(cuò)誤.
故選:BCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求:
(1)函數(shù)的圖象在點(diǎn)(0,-2)處的切線方程;
(2)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為4,M是AD的中點(diǎn),動(dòng)點(diǎn)N在正方形ABCD的內(nèi)部或其邊界移動(dòng),并且滿足,則的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的極值;
(2)若時(shí),與的單調(diào)性相同,求的取值范圍;
(3)當(dāng)時(shí),函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線的參數(shù)方程為:為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為:,直線與曲線交于A,B兩點(diǎn),
求曲線的普通方程及的最小值;
若點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門滿分100分,高考錄取成績(jī)卷面總分滿分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:
(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間上是增函數(shù).
(1)求實(shí)數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為、.試問:是否存在實(shí)數(shù),使得不等式對(duì)任意及 恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分),分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80分”,估計(jì)的概率;
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”’,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)為坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).
(1)若點(diǎn)到直線的距離為, 求直線的方程;
(2)設(shè)點(diǎn)是直線與拋物線在第一象限的交點(diǎn).點(diǎn)是以點(diǎn)為圓心,為半徑的圓與軸負(fù)半軸的交點(diǎn).試判斷直線與拋物線的位置關(guān)系,并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com