【題目】已知函數(shù),
(1)求的極值;
(2)若時,與的單調性相同,求的取值范圍;
(3)當時,函數(shù),有最小值,記的最小值為,證明:.
【答案】(1) 極小值,無極大值. (2) (3)證明見解析
【解析】
(1)通過導函數(shù)大于零和小于零的解得函數(shù)單調區(qū)間,求出極值;
(2)由(1)知,在單調遞增,則在恒成立,轉化成不等式恒成立求參數(shù)范圍;
(3)時,有最小值,則的最小值是這個區(qū)間上的極小值,隱含著的根,結合根的存在性定理確定的范圍,利用隱零點關系轉化,即可求證.
解:(1)的定義域為,,
當時,;當時,,
所以在單調遞減,在單調遞增.
所以有極小值,無極大值.
(2)由(1)知,在單調遞增.
則在單調遞增,即在恒成立,
即在恒成立,
令,;,
所以當時,;當時,,
所以在單調遞增,在單調遞減,
又時,,所以,
∴.
(3),,,
∵,,∴,
∴在單調遞增,
又,,
∴存在唯一的,使得,
即,即,
當時,,單調遞減,
當時,,單調遞增,
∴,
令,,則恒成立,
則在上單調遞減,
∴即即,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的直角坐標方程為.
(1)求與的極坐標方程;
(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:的焦點坐標為,點,過點P作直線l交拋物線C于A,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:的焦點坐標為,點,過點P作直線l交拋物線C于A,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,且兩切線分別交x軸于M,N兩點,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問名不同性別的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
由算得,
參照附表,以下不正確的有( )
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別有關”
B.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別無關”
C.有以上的把握認為“愛好該項運動與性別有關”
D.有以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求在圖所示的的方格中“圈”的個數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經過的任意一個方格頂點都只與折線的兩條邊相連.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標原點,圓的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)設直線和圓相交于點、兩點,求的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com