【題目】已知函數(shù),

1)求的極值;

2)若時,的單調性相同,求的取值范圍;

3)當時,函數(shù)有最小值,記的最小值為,證明:.

【答案】(1) 極小值,無極大值. (2) (3)證明見解析

【解析】

1)通過導函數(shù)大于零和小于零的解得函數(shù)單調區(qū)間,求出極值;

2)由(1)知,單調遞增,則恒成立,轉化成不等式恒成立求參數(shù)范圍;

3時,有最小值,則的最小值是這個區(qū)間上的極小值,隱含著的根,結合根的存在性定理確定的范圍,利用隱零點關系轉化,即可求證.

解:(1的定義域為,

時,;當時,,

所以單調遞減,在單調遞增.

所以有極小值,無極大值.

2)由(1)知,單調遞增.

單調遞增,即恒成立,

恒成立,

;

所以當時,;當時,

所以單調遞增,在單調遞減,

時,,所以

.

3,,,

,∴

單調遞增,

,

∴存在唯一的,使得,

,即,

時,,單調遞減,

時,,單調遞增,

,,則恒成立,

上單調遞減,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的直角坐標方程為.

1)求的極坐標方程;

2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

(1)求橢圓的標準方程;

(2)若不經過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,平面平面,四邊形是菱形,.

(1)求證:;

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的焦點坐標為,點,過點P作直線l交拋物線CA,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,則面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的焦點坐標為,點,過點P作直線l交拋物線CA,B兩點,過A,B分別作拋物線C的切線,兩切線交于點Q,且兩切線分別交x軸于M,N兩點,則面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問名不同性別的大學生是否愛好某項運動,得到如下的列聯(lián)表:

愛好

40

20

不愛好

20

30

算得,

參照附表,以下不正確的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯誤的概率不超過的前提下,認為愛好該項運動與性別有關

B.在犯錯誤的概率不超過的前提下,認為愛好該項運動與性別無關

C.以上的把握認為愛好該項運動與性別有關

D.以上的把握認為愛好該項運動與性別無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求在圖所示的的方格中“圈”的個數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經過的任意一個方格頂點都只與折線的兩條邊相連.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線與直線平行,且過坐標原點,圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求直線和圓的極坐標方程;

(2)設直線和圓相交于點、兩點,求的周長.

查看答案和解析>>

同步練習冊答案