【題目】對任意,,,給出下列命題:

①“”是“”的充要條件;

②“是無理數(shù)”是“是無理數(shù)”的充要條件;

③“”是“”的必要條件,

④“”是“”的充分條件.

其中真命題的個數(shù)為().

A.1

B.2

C.3

D.4

【答案】B

【解析】

對于①,考慮 ,不是必要條件,所以命題不正確;

對于②,根據(jù)無理數(shù)加有理數(shù)是無理數(shù),有理數(shù)加有理數(shù)是有理數(shù)可知,命題正確;

對于③ ,小于4的數(shù)不一定小于3,但小于3的數(shù)一定小于4,說以命題正確;

對于④,,說明不是充分條件,所以命題不正確.

對于①, ;所以“”是“”的充分條件,

時,,此時大小關(guān)系不確定,所以“”不是“”的必要條件,故①不正確;

對于②,因為是無理數(shù),5是有理數(shù),所以必是無理數(shù),所以“是無理數(shù)”是“是無理數(shù)”的充分條件;因為是無理數(shù),5是有理數(shù),所以是無理數(shù),所以“是無理數(shù)”是“是無理數(shù)”的必要條件,因此是充要條件,故②正確;

對于③,因為時,必有,所以“”是“”的必要條件,故③正確;

對于④,因為1>-2,但,所以 “”不是“”的充分條件,故④不正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點,以軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為

(1)若,求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于,兩點,當(dāng)變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在30人或30人以下,每人需交費用為900元;若旅行團(tuán)人數(shù)多于30,則給予優(yōu)惠:每多1,人均費用減少10,直到達(dá)到規(guī)定人數(shù)75人為止.旅行社需支付各種費用共計15000元.

1)寫出每人需交費用關(guān)于人數(shù)的函數(shù);

2)旅行團(tuán)人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到在下底面,求:

1繩子的最短長度;

2在繩子最短時,上底圓周上的點到繩子的最短距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的正三角形,為棱的中點.

()求證:平面;

()若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列關(guān)于函數(shù)的單調(diào)性說法正確的是(

A.函數(shù)上不具有單調(diào)性

B.當(dāng)時,上遞減

C.的單調(diào)遞減區(qū)間是,則a的值為

D.在區(qū)間上是減函數(shù),則a的取值范圍是

E.在區(qū)間上不可能是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在吸煙與患肺病是否相關(guān)的判斷中,有下面的說法:

1)從獨立性分析可知在犯錯誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,是指有的可能性使得推斷錯誤.

2)從獨立性分析可知在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,若某人吸煙,則他有的可能患有肺。

3)若,則在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺;

其中說法正確的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

1)函數(shù),是否為的生成函數(shù)?說明理由;

2)設(shè),,當(dāng)時生成函數(shù),求的對稱中心(不必證明);

3)設(shè),,取,,生成函數(shù),若函數(shù)的最小值是5,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個由構(gòu)成的列的數(shù)表,且中所有數(shù)字之和不小于,所有這樣的數(shù)表構(gòu)成的集合記為,記的第行各數(shù)之和,的第列各數(shù)之和、,、、、、中的最大值.

1)對如下數(shù)表,求的值;

2)設(shè)數(shù)表,求的最小值;

3)已知為正整數(shù),對于所有的,且的任意兩行中最多有列各數(shù)之和為,求的值.

查看答案和解析>>

同步練習(xí)冊答案