10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$,函數(shù)g(x)=f2(x)+f(x)+t(t∈R).關(guān)于函數(shù)g(x)的零點(diǎn),下列判斷不正確的是( 。
A.若t<-2,g(x)有四個(gè)零點(diǎn)B.若t=-2,g(x)有三個(gè)零點(diǎn)
C.若-2<t<$\frac{1}{4}$,g(x)有兩個(gè)零點(diǎn)D.若t=$\frac{1}{4}$,g(x)有一個(gè)零點(diǎn)

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$的解析式,畫出函數(shù)f(x)的圖象,令m=f(x),可得m≥1時(shí),m=f(x)有兩根,m<1時(shí),m=f(x)有一根,根據(jù)二次函數(shù)的圖象和性質(zhì)分析t取不同值時(shí),g(x)=m2+m+t根的個(gè)數(shù)及分面情況,綜合討論結(jié)果,可得答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$的圖象如下圖所示:

令m=f(x),m≥1時(shí),m=f(x)有兩根,m<1時(shí),m=f(x)有一根,
若t<-2,則m2+m+t=0有兩個(gè)根,一個(gè)大于1,一個(gè)小于1
此時(shí),g(x)=0有三個(gè)根,故A錯(cuò)誤;
若t=-2,則由m2+m+t=0得m=-2,m=1,
此時(shí)g(x)=0有三個(gè)根,
即g(x)有三個(gè)零點(diǎn),故B正確;
若-2<t<$\frac{1}{4}$,則m2+m+t=0有兩個(gè)根,但均小于1
此時(shí),g(x)=0有兩個(gè)根,故C正確;
若t=$\frac{1}{4}$,則g(x)=f2(x)+f(x)+$\frac{1}{4}$=(m+$\frac{1}{2}$)2=0,
此時(shí)m=-$\frac{1}{2}$,由上圖可得,此時(shí)函數(shù)m=0有一個(gè)根,
即g(x)有一個(gè)零點(diǎn),故D正確.
故選A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,函數(shù)解析式的求解及常用方法,其中畫出函數(shù)f(x)的圖象,熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)  y=sin$\frac{x}{2}$,x∈R的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)g(x)=a-x2($\frac{1}{e}$≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是[1,e2-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|x2<4},B={1,2,3},則A∩B=( 。
A.{1,2,3}B.{1,2}C.{1}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為$\frac{1}{2}$,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.國慶節(jié)前夕,甲、乙兩同學(xué)相約10月1日上午8:00到8:30之間在7路公交赤峰二中站點(diǎn)乘車去紅山公園游玩,先到者若等了10分鐘還沒有等到后到者,則需發(fā)短信聯(lián)系.假設(shè)兩人的出發(fā)時(shí)間是獨(dú)立的,在8:00到8:30之間到達(dá)7路公交赤峰二中站點(diǎn)是等可能的,則兩人不需要發(fā)短信聯(lián)系就能見面的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知P:x∈R且x2+2x-3<0,已知Q:x∈R且$\frac{x+2}{x-3}$<0.
(Ⅰ)在區(qū)間(-4,4)上任取一個(gè)實(shí)數(shù)x,求命題“P且Q”為真的概率;
(Ⅱ)設(shè)在數(shù)對(duì)(a,b)中,a∈{x∈Z|P真},b∈{x∈Z|Q真},求“事件b-a∈{x|P或Q真}”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U={x∈N|y=lg(5-x)},M={x∈Z|1≤2x≤4),N={2,3},則(∁UM)∩N=( 。
A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面區(qū)域的面積為S,則$\frac{{k}^{2}+1}{S}$的最小值等于( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊答案