【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20161月至201812月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,判斷下列結(jié)論:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在7,8月;

4)各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn).

其中正確結(jié)論的個數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

由題圖可知逐一分析即可,這三年8月到9月的月接待游客量在減少,則結(jié)論(1)錯誤,(2)(3)(4)正確.

由題圖可知,這三年8月到9月的月接待游客量在減少,則結(jié)論(1)錯誤;

年接待游客數(shù)量逐年增加,故(2)正確;

各年的月接待游客量高峰期大致在7,8月,故(3)正確;

各年1月至6月的月接待游客量相對變化較小,而7月至12月則變化較大,故(4)正確;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項公式為,數(shù)列的通項公式為.設(shè),若數(shù)列的最大項為,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,在如右圖所示的程序框圖中,如果輸入,而輸出,則在空白處可填入(

A①②③ B②③ C③④ D②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心為,左、右焦點分別為、,上頂點為,右頂點為,且、成等比數(shù)列.

1)求橢圓的離心率;

2)判斷的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),給出命題,;命題:函數(shù)的值域為

1)若為真命題,求實數(shù)的取值范圍;

2)若為真,為假,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高二年級舉行了由全體學(xué)生參加的一分鐘跳繩比賽,計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

16

17

18

19

20

年級組為了解學(xué)生的體質(zhì),隨機抽取了100名學(xué)生的跳繩個數(shù)作為一個樣本,繪制了如下樣本頻率分布直方圖.

(1)現(xiàn)從樣本的100名學(xué)生跳繩個數(shù)中,任意抽取2人的跳繩個數(shù),求兩人得分之和小于35分的概率;(用最簡分?jǐn)?shù)表示)

(2)若該校高二年級共有2000名學(xué)生,所有學(xué)生的一分鐘跳繩個數(shù)近似服從正態(tài)分布,其中,為樣本平均數(shù)的估計值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點值作代表).利用所得的正態(tài)分布模型,解決以下問題:

(i)估計每分鐘跳繩164個以上的人數(shù)(結(jié)果四舍五入到整數(shù));

(ii)若在全年級所有學(xué)生中隨機抽取3人,每分鐘跳繩在179個以上的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望與方差.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面,,點分別為的中點.

(Ⅰ)求證:;

(Ⅱ)求證:平面;

(Ⅲ)求平面與平面所成二面角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊答案