【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn , n∈N* , 求數(shù)列{cn}的前n項(xiàng)和.
【答案】
(1)解:設(shè)數(shù)列{an}的公比為q,數(shù)列{bn}的公差為d,由題意,q>0,
由已知有 ,消去d整理得:q4﹣2q2﹣8=0.
∵q>0,解得q=2,∴d=2,
∴數(shù)列{an}的通項(xiàng)公式為 ,n∈N*;
數(shù)列{bn}的通項(xiàng)公式為bn=2n﹣1,n∈N*.
(2)解:由(1)有 ,
設(shè){cn}的前n項(xiàng)和為Sn,則
,
,
兩式作差得: =2n+1﹣3﹣(2n﹣1)×2n=﹣(2n﹣3)×2n﹣3.
∴
【解析】(1)設(shè)出數(shù)列{an}的公比和數(shù)列{bn}的公差,由題意列出關(guān)于q,d的方程組,求解方程組得到q,d的值,則等差數(shù)列和等比數(shù)列的通項(xiàng)公式可求;(2)由題意得到 ,然后利用錯(cuò)位相減法求得數(shù)列{cn}的前n項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=4,an+1=3an﹣2(n∈N+)
(1)求證:數(shù)列{an﹣1}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形草坪AMPN中,點(diǎn)C在對角線MN上.CD垂直于AN于點(diǎn)D,CB垂直于AM于點(diǎn)B,|CD|=|AB|=3米,|AD|=|BC|=2米,設(shè)|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組 表示的平面區(qū)域?yàn)镸,直線y=kx﹣1與區(qū)域M沒有公共點(diǎn),則實(shí)數(shù)k的最大值為( )
A.3
B.0
C.﹣3
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (p﹣2)x2+(2q﹣8)x+1(p>2,q>0).
(1)當(dāng)p=q=3時(shí),求使f(x)≥1的x的取值范圍;
(2)若f(x)在區(qū)間[ ,2]上單調(diào)遞減,求pq的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>0,b>0)上的點(diǎn)P到左、右兩焦點(diǎn)F1 , F2的距離之和為2 ,離心率為 .
(1)求橢圓的方程;
(2)是否存在同時(shí)滿足①②兩個(gè)條件的直線l?
①過點(diǎn)M(0, );
②存在橢圓上與右焦點(diǎn)F2共線的兩點(diǎn)A、B,且A、B關(guān)于直線l對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0
(1)若m=2,那么p是q的什么條件;
(2)若q是p的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(a﹣ )(a∈R).若關(guān)于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一個(gè)元素,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)對任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實(shí)數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數(shù)g(x)的零點(diǎn)都是函數(shù)h(x)=f(f(x))+m的零點(diǎn),求h(x)的所有零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com