【題目】已知事件“在矩形ABCD的邊CD上隨機(jī)取一點P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =( )
A.
B.
C.
D.
【答案】C
【解析】解:記“在矩形ABCD的邊CD上隨機(jī)取一點P,使△APB的最大邊是AB”為事件M,試驗的全部結(jié)果構(gòu)成的長度即為線段CD, 若△APB的最大邊是AB”發(fā)生的概率為 ,
則 = ,
設(shè)AD=y,AB=x,則DE= x,PE= DE= x,
則PC= x+ x= x,
則PB2=AB2時,
PC2+BC2=PB2=AB2 ,
即( x)2+y2=x2 ,
即 x2+y2=x2 ,
則y2= x2 ,
則y= x,
即 = ,
即 = ,
故選:C.
【考點精析】本題主要考查了幾何概型的相關(guān)知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在R上的函數(shù),對任意實數(shù)x,有f(1﹣x)=x2﹣3x+3.
(1)求函數(shù)的解析式;
(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點、在軸上,離心率為,在橢圓上有一動點與、的距離之和為4,
(Ⅰ) 求橢圓E的方程;
(Ⅱ) 過、作一個平行四邊形,使頂點、、、都在橢圓上,如圖所示.判斷四邊形能否為菱形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研究新產(chǎn)品成功的概率分別為 和 ,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求恰好有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲得利潤120萬元,不成功則會虧損50萬元;若新產(chǎn)品B研發(fā)成功,企業(yè)可獲得利潤100萬元,不成功則會虧損40萬元,求該企業(yè)獲利ξ萬元的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知點D是AB上一點,滿足=λ,點E是邊CB上一點,滿足=λ.
①當(dāng)λ=時,求;
②是否存在非零實數(shù)λ,使得⊥?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,經(jīng)過原點,且斜率為正數(shù)的直線與圓交于兩點.
(。┣笞C: 為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,離心率為,右焦點到直線的距離為2.
(1)求橢圓的方程;
(2)橢圓下頂點為,直線()與橢圓相交于不同的兩點,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某班一次測驗成績進(jìn)行統(tǒng)計,如下表所示:
分?jǐn)?shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
概率 | 0.02 | 0.04 | 0.17 | 0.36 | 0.25 | 0.15 |
(1)求該班成績在[80,100]內(nèi)的概率;
(2)求該班成績在[60,100]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a+1|(a>0是常數(shù)).
(Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(3)< ,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com