【題目】如圖1,四邊形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,將四邊形ABCD沿著BD折疊,得到圖2所示的三棱錐A﹣BCD,其中AB⊥CD.
(1)證明:平面ACD⊥平面BAD;
(2)若F為CD中點,求二面角C﹣AB﹣F的余弦值.
【答案】
(1)證明:(1)∵AE⊥BD,且BE=DE,∴△ABD是等腰直角三角形,
∴AB⊥AD,又AB⊥CD,且AD,CD平面ACD,AD∩CD=D,
∴AB⊥平面ACD,
又AB平面BAD,∴平面ACD⊥平面BAD.
(2)解:(2)以E為原點,EC為x軸,ED為y軸,
過E作平面BDC的垂直為z軸,建立空間直角坐標系,
過A作平面BCD的垂線,垂足為G,根據(jù)對稱性,G點在x軸上,
設AG=h,由題設知:
E(0,0,0),C(2,0,0),B(0,﹣1,0),D(0,1,0),
A( ,0,h),F(xiàn)(1, ,0), =( ,1,h), =(2,﹣1,0),
∵AB⊥CD,∴ =2 ﹣1=0,解得h= ,
∴A( ).
∵ =( ), =(1, ,0),
設平面ABF的法向量 =(a,b,c),
則 ,
令a=9,得 =(9,﹣6, ),
∵AD⊥AB,AD⊥AC,
∴2 =(1,﹣2, )是平面ABC的一個法向量,
∴cos< ,2 >= = = ,
∵二面角C﹣AB﹣F是銳角,
∴二面角C﹣AB﹣F的余弦值為 .
【解析】(Ⅰ)地出AB⊥AD,AB⊥CD,且AD,由此能證明AB⊥平面ACD,從而得到平面ACD⊥平面BAD.(Ⅱ)以E為原點,EC為x軸,ED為y軸,過E作平面BDC的垂直為z軸,建立空間直角坐標系,利用向量法能求出二面角C﹣AB﹣F的余弦值.
【考點精析】本題主要考查了平面與平面垂直的判定的相關知識點,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失。M分100分).
(1)求圖中a的值;
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(參考公式:K2= ,其中n=a+b+c+d)
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米時)的平方成正比,比例系數(shù)為0.01;固定部分為元().
(1)把全程運輸成本(元)表示為速度(千米時)的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(滿分12分)學習雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(Ⅰ)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?
(Ⅱ)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神有關?
參考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點,直線l:(其中).
(Ⅰ)求直線l所經(jīng)過的定點P的坐標;
(Ⅱ)若分別過A,B且斜率為的兩條平行直線截直線l所得線段的長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示,分別是圖像的最低點和最高點,
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖像向左平移個單位長度,再把所得圖像上各點橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖像,求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)對任意的實數(shù)m,n都有:f(m+n)=f(m)+f(n)-1,
且當x>0時,有f(x)>1.
(1)求f(0).
(2)求證:f(x)在R上為增函數(shù).
(3)若f(1)=2,且關于x的不等式f(ax-2)+f(x-x2)<3對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com