(I)求動(dòng)圓圓心的軌跡的方程;
(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng)變化且為定值時(shí),證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
22、解:(I)如圖,設(shè)為動(dòng)圓圓心,為記為,過點(diǎn)作直線的垂線,垂足為,由題意知:
即動(dòng)點(diǎn)到定點(diǎn)與定直線的距離相等,由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),為準(zhǔn)線,所以軌跡方程為
(II)如圖,設(shè),由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,
顯然,將與聯(lián)立消去,
得
由韋達(dá)定理知 (*)
1* 當(dāng)時(shí),即時(shí),
∴,,
∴
由(*)式知:,∴
因此直線的方程可表示為:,即,
∴直線恒過定點(diǎn)
2* 當(dāng)時(shí),由,得
==
=
將(*)式代入上式整理化簡(jiǎn),得:
,∴,
此時(shí),直線的方程可表示為:
即
∴直線恒過定點(diǎn)
∴由1*、2*知,當(dāng)時(shí),直線恒過定點(diǎn),
當(dāng)時(shí)直線恒過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
OR |
OS |
2 |
14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2005
山東,22)如下圖,已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中p>0,(1)
求動(dòng)圓圓心的軌跡C的方程;(2)
設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別為α和β,當(dāng)α、β變化且α+β為定值θ(0<θ<π)時(shí),證明:直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com