【題目】函數(shù),曲線在點(diǎn)處的切線在軸上的截距為.
(1)求;
(2)討論的單調(diào)性;
(3)設(shè),證明:.
【答案】(1) (2) 在上單調(diào)遞增.(3)證明見解析
【解析】
(1)由題意知切點(diǎn)坐標(biāo)為,切線方程為:,結(jié)合條件列方程即可得到結(jié)果;
(2)由(1)知,對(duì)求導(dǎo),得,從而可知在上的單調(diào)性;
(3)欲證,即證.只需證.不妨設(shè),由此可得.因此,欲證,只需證.
(1)由題意知切點(diǎn)坐標(biāo)為.
對(duì)求導(dǎo),得,從而.
所以切線方程為,令,得,解得.
(2)由(1)知,從而,對(duì)求導(dǎo),得
,從而可知在上單調(diào)遞增.
(3)(方法一)
由(1)知,故單調(diào)遞減,
由(2)知單調(diào)遞增,
當(dāng)時(shí), , .
當(dāng)時(shí), , .
故 ,所以
.
因?yàn)?/span> 所以
(方法二)令,解得.
從而,作商,得,
所以,從而.
所以.
當(dāng)為偶數(shù)時(shí),;
當(dāng)為奇數(shù)時(shí),.
故無(wú)論為奇數(shù)還是偶數(shù),.
下只需證明.
當(dāng)時(shí),有,滿足題意;
當(dāng)時(shí),.
故只需證,即證.
而當(dāng)時(shí),.
故不等式得證.
(方法三)要證,只需證,
只需證.易知在上單調(diào)遞減,且.
若,則.
此時(shí),,只需證,
只需證.此時(shí),.
由(2)知.
若,則.
此時(shí),,只需證.
只需證.此時(shí),.
由(2)知,.
綜上所述,成立.
所以,.
易知,,所以成立.
故原不等式得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線與交于、兩點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點(diǎn)為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,∥,,且,,是棱的中點(diǎn) .
(Ⅰ)求證:∥平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖為某地區(qū)2006年~2018年地方財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額折線圖.根據(jù)該折線圖可知,該地區(qū)2006年~2018年( )
A.財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額均呈增長(zhǎng)趨勢(shì)
B.財(cái)政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲(chǔ)蓄年末余額的逐年增長(zhǎng)速度相同
C.財(cái)政預(yù)算內(nèi)收入年平均增長(zhǎng)量高于城鄉(xiāng)居民儲(chǔ)蓄年末余額年平均增長(zhǎng)量
D.城鄉(xiāng)居民儲(chǔ)蓄年末余額與財(cái)政預(yù)算內(nèi)收入的差額逐年增大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市要建造一個(gè)邊長(zhǎng)為的正方形市民休閑公園,將其中的區(qū)域開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過(guò)對(duì)邊上一點(diǎn)的區(qū)域內(nèi)作一次函數(shù)的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)寫出函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求的值;
(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名.
①完成如下所示列聯(lián)表
技術(shù)工 | 非技術(shù)工 | 總計(jì) | |
月工資不高于平均數(shù) | |||
月工資高于平均數(shù) | |||
總計(jì) |
②則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com