12.某種商品計劃提價,現(xiàn)有四種方案,方案(Ⅰ)先提價m%,再提價n%;方案(Ⅱ)先提價n%,再提價m%;方案(Ⅲ)分兩次提價,每次提價($\frac{m+n}{2}$)%;方案(Ⅳ)一次性提價(m+n)%,已知m>n>0,那么四種提價方案中,提價最多的是( 。
A.B.C.D.

分析 設(shè)單價為1,那么方案(Ⅰ)售價為:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提價后的價格是:(1+n%)(1+m%));(Ⅲ)提價方案提價后的價格是:(1+$\frac{m+n}{2}$%)2;方案(Ⅳ)提價后的價格是1+(m+n)%顯然甲、乙兩種方案最終價格是一致的,因而只需比較(1+m%)(1+n%)與(1+$\frac{m+n}{2}$%)2的大。

解答 解:依題意得:設(shè)單價為1,那么方案(Ⅰ)售價為:1×(1+m%)(1+n%)=(1+m%)(1+n%);
方案(Ⅱ)提價后的價格是:(1+n%)(1+m%));
(1+m%)(1+n%)=1+m%+n%+m%•n%=1+(m+n)%+m%•n%;
(Ⅲ)提價后的價格是(1+$\frac{m+n}{2}$%)2=1+(m+n)%+($\frac{m+n}{2}$%)2;
方案(Ⅳ)提價后的價格是1+(m+n)%
所以只要比較m%•n%與($\frac{m+n}{2}$%)2的大小即可
∵($\frac{m+n}{2}$%)2-m%•n%=($\frac{m-n}{2}$%)2≥0
∴($\frac{m+n}{2}$%)2≥m%•n%
即(1+$\frac{m+n}{2}$%)2>(1+m%) (1+n%)
因此,方案(Ⅲ)提價最多.
故選C.

點評 解決問題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語,進(jìn)而找到所求的量的等量關(guān)系.需用到的知識點為:(a-b)2≥0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是遞增的等比數(shù)列,a2+a4=10,a1.a(chǎn)5=16,則數(shù)列{an}的前6項和等于63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=-x+sinx,命題p:?x∈(0,π),f(x)<0,則  (  )
A.p是真命題,¬p:?x∈(0,π),f(x)≥0B.p是假命題,¬p:?x∈(0,π),f(x)≥0
C.p是假命題,¬p:?x∈(0,π),f(x)≥0D.p是真命題,¬p:?x∈(0,π),f(x)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數(shù)y=f(x)的圖象(  )
A.向左平移$\frac{2π}{3}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{2π}{3}$個單位長度D.向右平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,則關(guān)于x的不等式f(2x+3)+f(x)>0的解集是(  )
A.(-3,+∞)B.(-∞,-3)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)于命題的說法錯誤的是( 。
A.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n>1000
D.命題“?x∈(-∞,0),2x<3x”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)不等式組$\left\{\begin{array}{l}{x≥1}\\{x-y≤0}\\{x+y≤4}\end{array}\right.$,表示的平面區(qū)域為M,若直線y=kx-2上存在M內(nèi)的點,則實數(shù)k的取值范圍是( 。
A.[1,3]B.(-∞,1]∪[3,+∞)C.[2,5]D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xe-x+(x-2)ex-a
(1)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>2時,若ex•f(x)≥x2-2x+1對任意x≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=x-alnx+a+\frac{x}$.
(1)若曲線y=f(x)在點(1,f(1))處的切線過點(4,-2),且x=2時,y=f(x)有極值,求實數(shù)a,b的值;
(2)若函數(shù)g(x)=x•f(x)在區(qū)間$[\frac{1}{e},{e^2}]$上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案