【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)點N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時,MN∥平面BEF.

【答案】
(1)證明:∵FD⊥底面ABCD,∴FD⊥AD,F(xiàn)D⊥BD

∵AF=BF,∴△ADF≌△BDF,∴AD=BD,

連接DM,則DM⊥AB,

∵AB∥CD,∠BCD=90°,

∴四邊形BCDM是正方形,∴BD⊥CM,

∵DF⊥CM,∴CM⊥平面BDF.


(2)解:當(dāng)CN=1,即N是CE的中點時,MN∥平面BEF.

證明如下:

過N作NO∥EF,交ED于O,連結(jié)MO,

∵EC∥FD,∴四邊形EFON是平行四邊形,

∵EC=2,F(xiàn)D=3,∴OF=1,∴OD=2,

連結(jié)OE,則OE∥DC∥MB,且OE=DC=MB,

∴四邊形BMOE是平行四邊形,則OM∥BE,又OM∩ON=O,

∴平面OMN∥平面BEF,

∵MN平面OMN,∴MN∥平面BEF.


【解析】(1)推導(dǎo)出四邊形BCDM是正方形,從而BD⊥CM,又DF⊥CM,由此能證明CM⊥平面BDF.(2)過N作NO∥EF,交EF于O,連結(jié)MO,則四邊形EFON是平行四邊形,連結(jié)OE,則四邊形BMON是平行四邊形,由此能推導(dǎo)出N是CE的中點時,MN∥平面BEF.
【考點精析】掌握直線與平面平行的判定和平面與平面垂直的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,D,E分別是BC,AC的中點.PB=PC=AB=2,AC=4,BC=2 ,PA=

(1)求證:平面ABC⊥平面PED;
(2)求AC與平面PBC所成的角;
(3)求平面PED與平面PAB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點,且 =2,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位要在800名員工中抽去80名員工調(diào)查職工身體健康狀況,其中青年員工400名,中年員工300名,老年員工100名,下列說法錯誤的是(
A.老年人應(yīng)作為重點調(diào)查對象,故抽取的老年人應(yīng)超過40名
B.每個人被抽到的概率相同為
C.應(yīng)使用分層抽樣抽取樣本調(diào)查
D.抽出的樣本能在一定程度上反映總體的健康狀況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,證明:對任意的,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點,求證:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一點D,使得二面角B1﹣CD﹣C1的大小為60°.

查看答案和解析>>

同步練習(xí)冊答案