【題目】已知集合,集合滿足,則所有滿足條件的集合的個數(shù)為(

A.8B.16C.15D.32

【答案】A

【解析】

根據(jù)集合A的元素特點,可確定A中的元素,再由,確定滿足條件的集合C的元素即可得到結論.

∵集合,

∴當a0時,=﹣6,不合題意,舍去;

a1時,=﹣12,不合題意,舍去;

a2時,無意義,不合題意,舍去;

a3時,12,合題意,∴a3;

a4時,6,合題意,∴a4;

a5時,4,合題意,∴a5;

a6時,3,合題意,∴a6;

a7時,,不合題意,舍去;

a8時,2,合題意,∴a8

a14時,1,合題意,∴a14;

A{3,4,5,6,8,14},且,

C{34,5},{34,5,6},{34,5,8},{34,514},{3,4,56,8}{3,45,6,14}{3,4,5,8,14},{3,45,6,8,14}.故滿足條件的C8.

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E:的準線為,焦點為,為坐標原點。

(1)求過點、,且與相切的圓的方程;

(2)過點的直線交拋物線E于兩點,點A關于x軸的對稱點為,且點與點不重合,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)f(x)=|x+1|+|x-3|.

(1)若關于x的不等式f(x)<a有解,求實數(shù)a的取值范圍:

(2)若關于x的不等式f(x)<a的解集為(b, ),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面六個命題中,其中正確的命題序號為______________.

①函數(shù)的最小正周期為;

②函數(shù)的圖象關于點對稱;

③函數(shù)的圖象關于直線對稱;

④函數(shù)的單調(diào)遞減區(qū)間為;

⑤將函數(shù)向右平移)個單位所得圖象關于軸對稱,則的最小正值為;

⑥關于的方程的兩個實根中,一個根比1大,一個根比-1小,則的取值范圍為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何學是美籍法國數(shù)學家伯努瓦..曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路,如圖是按照一定的分形規(guī)律生產(chǎn)成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績將由語文數(shù)學英語3門統(tǒng)一高考成績和學生從思想政治、歷史、地理、物理、化學、生物6門等級性考試科目中自主選擇3個,按獲得該次考試有效成績的考生(缺考考生或未得分的考生除外)總人數(shù)的相應比例的基礎上劃分等級,位次由高到低分為A、B、C、D、E五等級,該省的某市為了解本市萬名學生的某次選考歷史成績水平,從中隨機抽取了名學生選考歷史的原始成績,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

(Ⅰ)估算名學生成績的平均值和中位數(shù)(同一組中的

數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)若抽取的分以上的只有名男生,現(xiàn)從抽樣的分以上學生中隨機抽取人,求抽取到名女生的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若存在三個不同實數(shù)使得,則的取值范圍是(

A.B.C.D.0,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校初一年級全年級共有名學生,為了拓展學生的知識面,在放寒假時要求學生在假期期間進行廣泛的閱讀,開學后老師對全年級學生的閱讀量進行了問卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計人員記得根據(jù)頻率直方圖計算出學生的平均閱讀量為萬字.根據(jù)閱讀量分組按分層抽樣的方法從全年級人中抽出人來作進一步調(diào)查.

(1)從抽出的人中選出人來擔任正副組長,求這兩個組長中至少有一人的閱讀量少于萬字的概率;

(2)為進一步了解廣泛閱讀對今后學習的影響,現(xiàn)從抽出的人中挑選出閱讀量低于萬字和高于萬字的同學,再從中隨機選出人來長期跟蹤調(diào)查,求這人中來自閱讀量為萬到萬字的人數(shù)的概率分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的焦點分別為,,離心率,過左焦點的直線與橢圓交于,兩點,,且.

(1)求橢圓的標準方程;

(2)過點的直線與橢圓有兩個不同的交點,,且點在點,之間,試求面積之比的取值范圍(其中為坐標原點).

查看答案和解析>>

同步練習冊答案