【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和最小值;

(2)若函數(shù)上的最小值為,求的值;

(3)若,且對任意恒成立,求的最大值.

【答案】(1)見解析;(2)見解析;(3)3

【解析】試題分析:(1)求導(dǎo)函數(shù),由導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;
(2),對結(jié)合在上的最小值為,分類討論,建立等式,從而可得結(jié)論.

(3)問題轉(zhuǎn)化為對任意恒成立,設(shè),根據(jù)函數(shù)的單調(diào)性求出的值即可.

試題解析:1的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,

2, ,

Ⅰ.當(dāng)時(shí), , 上單調(diào)遞增, ,所以,舍去.

Ⅱ.當(dāng)時(shí), 上單調(diào)遞減,在上單調(diào)遞增,

①若, 上單調(diào)遞增, ,所以,舍去,

②若 上單調(diào)遞減,在上單調(diào)遞增,所以,解得.

③若, 上單調(diào)遞減, ,所以,舍去,

綜上所述, .

(3)由題意得: 對任意恒成立,即對任意恒成立.

,則,令,則

所以函數(shù)上單調(diào)遞增,

因?yàn)榉匠?/span>上存在唯一的實(shí)根,且,當(dāng)時(shí), ,即

當(dāng)時(shí), ,即.

所以函數(shù)上遞減,在上單調(diào)遞增.

所以

所以,又因?yàn)?/span>,故整數(shù)的最大值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品的保鮮時(shí)間t(單位:小時(shí))與儲藏溫度x(單位:)滿足函數(shù)關(guān)系且該食品在4的保鮮時(shí)間是16小時(shí).

已知甲在某日上午10時(shí)購買了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)間變化如圖所示.給出以下四個(gè)結(jié)論:

該食品在6的保鮮時(shí)間是8小時(shí);

當(dāng)x[66]時(shí),該食品的保鮮時(shí)間t隨著x增大而逐漸減少;

到了此日13時(shí),甲所購買的食品還在保鮮時(shí)間內(nèi);

到了此日14時(shí),甲所購買的食品已然過了保鮮時(shí)間.

其中,所有正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過拋物線的焦點(diǎn),求的值;

(2)如果 ,證明:直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線f(x)=ke2x在點(diǎn)x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數(shù)g(x)=f(x)﹣|1nx|的兩個(gè)零點(diǎn),則( )
A.1<x1x2
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為矩形,平面, // ,, ,點(diǎn)點(diǎn)P在棱上.

(1)求證: ;

(2)若的中點(diǎn),求異面直線所成角的余弦值;

(3)是否存在正實(shí)數(shù),使得,且滿足二面角的余弦值為,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,M、N分別為棱BC和棱CC1的中點(diǎn),則異面直線AC和MN所成的角為( )

A. 30° B. 45° C. 90° D. 60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓心為,定點(diǎn), 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足

)求點(diǎn)的軌跡的方程;

為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線相切,并與軌跡交于不同的兩點(diǎn)當(dāng)且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案