11.下列判斷錯(cuò)誤的是( 。
A.若p∧q為假命題,則p,q至少之一為假命題
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若am2<bm2,則a<b”的否命題是假命題
D.“若$\overrightarrow a∥\overrightarrow c$且$\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow b$”是真命題

分析 根據(jù)命題命題真假判斷的真值表,可判斷A;寫出原命題的否定,可判斷B;寫出原命題的否命題,可判斷C;舉出反例$\overrightarrow{c}=\overrightarrow{0}$,可判斷D.

解答 解:若p∧q為假命題,則p,q至少之一為假命題,故A正確;
命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”,故B正確;
“若am2<bm2,則a<b”的否命題是“若am2≥bm2,則a≥b”,當(dāng)m=0時(shí)不成立,是假命題,故C正確;
“若$\overrightarrow a∥\overrightarrow c$且$\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow b$”在$\overrightarrow{c}=\overrightarrow{0}$時(shí),不成立,故是假命題,故D錯(cuò)誤
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體考查了復(fù)合命題,全稱命題的否定,四種命題,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的離心率為$\frac{{\sqrt{5}}}{2}$,P是該雙曲線上的點(diǎn),P在該雙曲線兩漸近線上的射影分別是A,B,則|PA|•|PB|的值為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S. 
①當(dāng)$0<CQ<\frac{1}{2}$時(shí),S為四邊形
②截面在底面上投影面積恒為定值$\frac{3}{4}$
③不存在某個(gè)位置,使得截面S與平面A1BD垂直 
④當(dāng)$CQ=\frac{3}{4}$時(shí),S與C1D1的交點(diǎn)滿足C1R1=$\frac{1}{3}$
其中正確命題的個(gè)數(shù)為   ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線x2+y2=2(|x|+|y|)圍成的圖形面積是8+4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)任意非零實(shí)數(shù)a、b,若a?b的運(yùn)算原理如圖所示,則(log28)?($\frac{1}{2}$)2=( 。 
A.16B.15C.14D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分如圖所示,則甲、乙兩運(yùn)動(dòng)員得分的中位數(shù)分別是( 。
A.26  33.5B.26   36C.23  31D.24.5   33.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U=R,集合A={-1,0,1,2,3},B={x|x≥2},則A∩∁UB={-1,0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{xn}的前n項(xiàng)和為Sn,且4xn-Sn-3=0(n∈N*);
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)若數(shù)列{yn}滿足yn+1-yn=xn(n∈N*),且y1=2,求滿足不等式${y_n}>\frac{55}{9}$的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=ax-b(a>0且a≠1,b∈R),g(x)=x+1,若對(duì)任意實(shí)數(shù)x均有f(x)•g(x)≤0,則$\frac{1}{a}+\frac{4}$的最小值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案